针对传统基团贡献法和半经验关联式未考虑煤液化油分子中基团键相互作用和缺乏适合其重质馏分油临界性质的计算方法,构建了基于人工神经网络-基团键贡献耦合模型(ANN-GBC),采用3层网络结构,输入层神经元数由煤液化油包含的45个基团键和常压沸点共46个,隐含层最佳神经元数通过试差法优化确定为40,临界性质作为输出层,研究了煤液化油15个窄馏分的临界性质与其分子结构之间的相关性。对20种模型化合物进行了ANN-GBC模型的校核与验证,其计算值与理论值偏离相对误差在2.5%以下,相关系数0.999 69