点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - GMM-Optim:将EM算法用于多类高斯混合模型,并使用optimtool进一步优化-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
GMM-Optim:将EM算法用于多类高斯混合模型,并使用optimtool进一步优化-源码
GMM优化 期望最大化(EM)算法是找到一组统计参数(即高斯数据集的均值和方差)的局部最大似然估计的好方法。 该项目展示了如何为多维,多维高斯数据实现EM算法,以及如何使用MATLAB的优化工具箱进一步完善MLE估计器。 笔记 GMM.m是主要的.m文件。 用户定义数据集的真实均值,方差和比例,然后在GaussianNormalDist.m中随机生成。 负对数可能性目标函数是通过GMM_negloglik.m计算的。 在获得EM估计值之后, optimtool将使用Nelder-Mead / S
所属分类:
其它
发布日期:2021-03-06
文件大小:128000
提供者:
weixin_42132598