您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. GRNN在学生写作成绩预测中的应用研究

  2. 由于学生英语写作成绩预测受诸多因素影响,具有高维、非线性特点,本文基于广义回归神经网络(GRNN)算法原理,构建了GRNN学生英语写作成绩预测模型,并与弹性BP算法改进的BP神经网络模型的预测结果进行对比分析。仿真结果表明:改进的BP神经网络模型的预测最大相对误差为3.23%,GRNN模型的预测最大相对误差仅为-0.72%,表明所建立的GRNN模型的预测精度高、泛化能力强、收敛速度快、调整参数少,验证了将GRNN应用于英语写作成绩预测方案的可行性。
  3. 所属分类:其它

    • 发布日期:2021-01-28
    • 文件大小:1048576
    • 提供者:weixin_38697557