煤矿瓦斯浓度的精准预测是矿井瓦斯防治的关键。为了准确可靠地预测工作面瓦斯浓度,提出了一种基于门控循环单元方法的工作面瓦斯浓度预测模型。采用邻近均值法对数据缺失值和异常值进行补全,采用MinMaxScaler方法对实验数据进行归一化处理,为了提高模型精度和稳定性,采用粒子群算法和Adam算法对GRU超参数进行优化,从而构建了基于PSO-Adam-GRU的工作面瓦斯浓度预测模型。以崔家沟煤矿生产监测数据为样本数据进行模型训练,采用平均绝对误差、均方根误差、运行时间3种评价指标对预测模型性能进行评估,