为提高部分数据缺失情况下智能电网光伏发电功率预测精度,提出一种基于双维度顺序填补框架与改进Kohonen天气聚类的光伏发电功率预测模型。采用双维度顺序填补方法补齐缺失数据,基于完整数据分析光伏发电功率影响因素,建立改进Kohonen天气聚类模型,并利用S-Kohonen实现预测日天气类型识别,将聚类历史日数据与预测日气象数据作为输入,采用多种群果蝇优化广义回归神经网络(MFOA-GRNN)模型对预测日光伏发电功率进行预测。仿真结果表明,所提方法能有效提高预测精度,为实现数据缺失情况下智能电网光伏