您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 高性能并行计算技术文档

  2. 第一部分并行计算基础3 第一章预备知识5 x1.1 并行计算的目标和内容. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 x1.2 并行计算机发展历程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 x1.2.1 计算机系统发展简史. . . . . . . . . . . . . . . . . . . . . . . . . . 6 x1.2.2 并行计算
  3. 所属分类:其它

    • 发布日期:2009-07-21
    • 文件大小:1048576
    • 提供者:songgaogeo
  1. 数值分析软件 v1.1 2009年9月最新版(简体中文)

  2. 该数值分析软件(Numerical Analysis Software)实现了现代数值分析中的基本计算方法。主要包括线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值及特征向量的计算、插值法与最小二乘法曲线拟合、数值微积分、常微分方程的数值解法,有利于工程技术人员在实际中方便快捷地应用,也可在数值分析计算教学时进行演示,极大地提高其工作效率。软件采用了友好的输入输出方案允许用户按照一定格式输入的随意性,格式详见帮助文档;利用了一定的图形处理技术,直观地显示数据具体信息,通过良好的数学方法
  3. 所属分类:网络基础

    • 发布日期:2009-09-17
    • 文件大小:3145728
    • 提供者:chutao
  1. 解方程软件组合(多元方程组、非线性方程和常微分方程)

  2. 本资源涵盖解多元方程组、非线性方程和常微分方程的软件组合,介绍如下: 线性方程组的数值解法: 线性方程组亦即多元一次方程组。在自然科学与工程技术中,很多问题的解决常常归结为解线性方程组,如电学中的网络问题,船体数学放样中的建立三次样条函数问题,机械和建筑结构的设计和计算等等。因此,如何利用电子计算机这一强有力的计算工具去求解线性方程组,是一个非常重要的问题。线性方程组的解法分直接(解)法{是指在没有舍入误差的假设下,经过有限步运算即可求得方程组的精确解的方法。}和迭代(解)法{是用某种极限过程
  3. 所属分类:网络基础

    • 发布日期:2009-09-17
    • 文件大小:8388608
    • 提供者:chutao
  1. 求解线性方程组的解——java实现

  2. 高斯列主消元法 LU分解法 迭代法求解线性方程组 高斯列主消元法 LU分解法 迭代法求解线性方程组 高斯列主消元法 LU分解法 迭代法求解线性方程组 高斯列主消元法 LU分解法 迭代法求解线性方程组 高斯列主消元法 LU分解法 迭代法求解线性方程组
  3. 所属分类:Java

    • 发布日期:2009-11-30
    • 文件大小:3072
    • 提供者:shilinbin
  1. 高斯消元法 LU迭代法 雅可比迭代法

  2. 高斯消元法 LU迭代法 雅可比迭代法数值分析上机源代码,全部可以实现。并且有截图。
  3. 所属分类:C/C++

    • 发布日期:2010-01-03
    • 文件大小:111616
    • 提供者:w397090770
  1. 数值分析实践报告(matlab软件)4个基础实验

  2. 实验一:复化辛普森公式求定积分 1.理解复化梯形公式、复化Simpson公式、Romberg方法和复化Gauss-Legendre公式计算的概念 2.掌握Newton-Cotes求积公式的原理,包括了解这些公式的误差及代数精度,参考课本写出复化辛普森算法的程序,在matlab中实现,并用matlab内置的函数计算,进行误差分析。 实验二:非线性方程求解 内容:用一般迭代法与Newton迭代法求解非线性方程的根,讨论迭代函数对收敛性的影响,初值的选取对迭代法的影响,收敛性与收敛速度的比较。 要求
  3. 所属分类:其它

    • 发布日期:2010-01-05
    • 文件大小:51200
    • 提供者:gyql_h
  1. 数值计算方法 实验程序

  2. 迭代法,弦截法,雅可比,高斯消元,LU分解,插值,…………
  3. 所属分类:C

    • 发布日期:2010-01-09
    • 文件大小:6144
    • 提供者:maoyulong3
  1. 线性方程组的求解-列主元消元法,LU分解法,改进的平方根法,追赶法和雅可比迭代,高斯—塞德尔迭代

  2. 在科技研究和工程技术所提出的计算问题中,经常会遇到线性方程组的求解问题,这里主要是有关线性方程组的直接解法。解线性方程组的直接法是用有限次运算求出线性方程组 Ax=b 的解的方法。线性方程组的直接法主要有Gauss消元法及其变形、LU(如Doolittle、Crout方法等)分解法和一些求解特殊线性方程组的方法(如追赶法、LDLT法等)。这里主要有列主元消元法,LU分解法,改进的平方根法,追赶法和雅可比迭代,高斯—塞德尔迭代 的构造过程及相应的程序。线性方程的解法在数值计算中占有极重要的地位,
  3. 所属分类:专业指导

    • 发布日期:2010-04-06
    • 文件大小:619520
    • 提供者:whitelxl
  1. 数值计算方法的各种算法

  2. 超松弛迭代法 高斯列主元素消元法 牛顿向后插值 牛顿向前插 完全主元素消元法 Gauss-Seidel迭代法 Jacobi Lagrange插值 LU分解法 LU列主元分解
  3. 所属分类:其它

  1. java 求解线性方程组 高斯列主元消去 迭代法 LU二分法

  2. java 求解线性方程组 高斯列主元消去 迭代法 LU二分法 import java.util.Scanner; public class Gauss { /** * @列主元高斯消去法 */ static double a[][]; static double b[]; static double x[]; static int n; static int n2; //记录换行的次数 public static void Elimination(){ //消元
  3. 所属分类:Java

    • 发布日期:2010-11-25
    • 文件大小:5120
    • 提供者:wanzdhan
  1. 现代数值计算方法实验程序(二分法,牛顿迭代法等等)

  2. 二分法、迭代法、牛顿法、弦截法、高斯列主消元法、LU分解法、迭代法等 导入到MYECLIPSE
  3. 所属分类:Java

    • 发布日期:2010-12-24
    • 文件大小:39936
    • 提供者:zmc070809
  1. 數值分析課程設計matlab

  2. 分别用SOR方法和高斯消元的LU分解算法(lii=1, i=1,…,n)求解给定的线性方程组AX=B, 以感受迭代法和直接法的不同特点。附有matlab代碼。
  3. 所属分类:专业指导

    • 发布日期:2011-06-12
    • 文件大小:130048
    • 提供者:vennchan
  1. 高斯消元法

  2. 高斯消元法用c语言实现的 列主消元法、LU分解法、雅克比迭代法)
  3. 所属分类:其它

    • 发布日期:2011-09-09
    • 文件大小:8192
    • 提供者:hyinginging
  1. 计算方法试验报告

  2. 一些简单的计算方法的实现,包括GAUSS LU分解法 追赶法 Gauss-Jordan消去法 Jacobi迭代法
  3. 所属分类:C/C++

    • 发布日期:2011-12-16
    • 文件大小:133120
    • 提供者:bb0203
  1. 数值分析_三次样条插值_自动选取步长梯形法

  2. 数值分析_三次样条插值_自动选取步长梯形法_Romberg求积法_列主元高斯消去法_列主元LU分解法_Jacobi迭代法
  3. 所属分类:C/C++

    • 发布日期:2012-06-23
    • 文件大小:99328
    • 提供者:ava919264
  1. 牛顿下山法、亚当姆斯法、最小二乘法、LU算法、龙贝格算法、三次样条函数、高斯赛戴尔迭代等的java实现

  2. 牛顿下山法、 亚当姆斯法、 最小二乘法、 LU算法、 龙贝格算法、 三次样条函数、 高斯赛戴尔迭代 等几个方法的java代码实现 , 计算方法实验 配有界面 、 测试数据 和 帮助图片 10分绝对值
  3. 所属分类:Java

    • 发布日期:2013-12-28
    • 文件大小:149504
    • 提供者:lcf5201314
  1. C++数值算法程序,矩阵分解,高斯消去

  2. 关于LU矩阵分解,高斯消去和迭代法的小程序。
  3. 所属分类:其它

    • 发布日期:2008-10-31
    • 文件大小:5120
    • 提供者:ghostsmiling
  1. 线性方程组求根+直接法+迭代法

  2. 包含Gauss消去法、LU分解法、Jacobi迭代法、Gauss-Seidel迭代法、超松弛(SOR)迭代法及共轭迭代法的源代码;并通过3个案例做分析讲解,进一步了解各种方法的优缺点。
  3. 所属分类:专业指导

    • 发布日期:2015-10-29
    • 文件大小:247808
    • 提供者:zstu_wangrui
  1. 数值分析实验报告(牛顿迭代 高斯消元法及LU分解 牛顿差值 )都是word报告哦

  2. 牛顿迭代 高斯消元法及LU分解 牛顿差值 三个报告 自认为还不错哦 需要的可以看看哦
  3. 所属分类:专业指导

    • 发布日期:2009-01-05
    • 文件大小:25600
    • 提供者:xiaoingzizizizi
  1. 对流扩散方程非均匀网格上四阶紧致格式的预条件迭代法

  2. 利用带填补数的不完全LU分解(ILUT(τ,s))作预处理器以及FGMRES(20)作迭代加速器,对非均匀网格上二维对流扩散方程的高精度紧致差分格式进行数值实验,并与均匀网格上的计算结果进行对比,数值结果显示出非均匀网格上本文方法的优越性,在合适的网格伸缩系数下,本文方法不仅能够保证格式的四阶精度,而且降低了误差的数量级.同时,比较了预条件迭代法与传统迭代法的求解效率,结果表明预条件方法的单位对数残差几乎成直线下降,相比传统迭代法有明显的计算优势.
  3. 所属分类:其它

    • 发布日期:2021-03-03
    • 文件大小:1048576
    • 提供者:weixin_38707342
« 12 3 »