您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. LassoNet:3D点云的深度套索选择

  2. 在3D点云的探索性分析和可视化中,选择是一项基本任务。 关于选择方法的先前研究主要是基于诸如局部密度之类的启发式技术而发展的,因此限制了它们在一般数据中的适用性。 具体的挑战源于点云(例如,密集与稀疏),视点(例如,遮挡与不遮挡)和套索(例如,小与大)之间的巨大差异。 在这项工作中,我们介绍了LassoNet,这是一种用于3D点云的套索选择的新的深度神经网络,试图学习从视点和套索到点云区域的潜在映射。 为此,我们通过3D坐标变换和朴素的选择将用户目标点与视点和套索信息结合在一起,并通过意图过滤和
  3. 所属分类:其它

    • 发布日期:2021-03-09
    • 文件大小:1048576
    • 提供者:weixin_38713306
  1. LassoNet:3D点云的深度套索选择

  2. 在3D点云的探索性分析和可视化中,选择是一项基本任务。 关于选择方法的先前研究主要是基于诸如局部密度之类的启发式技术而发展的,因此限制了它们在一般数据中的适用性。 具体挑战源于点云(例如,密集与稀疏),视点(例如,遮挡与不遮挡)和套索(例如,小与大)之间的巨大差异。 在这项工作中,我们介绍了LassoNet,这是一种用于3D点云的套索选择的新的深度神经网络,试图学习从视点和套索到点云区域的潜在映射。 为此,我们通过3D坐标变换和朴素的选择将用户目标点与视点和套索信息结合在一起,并通过意图过滤和最
  3. 所属分类:其它

    • 发布日期:2021-03-31
    • 文件大小:3145728
    • 提供者:weixin_38554186