产生式模型和判别式模型(Generative model vs. Discriminative model),概率图模型(Graphical Models),朴素贝叶斯分类器( Naive Bayes Classifier),隐马尔可夫模型(Hidden Markov Model,HMM),最大熵模型(Maximum Entropy Model,MEM),最大熵马尔可夫模型(MEMM),条件随机场(conditional random fields,CRF)
为克服暗通道先验的适用局限性,同时增强一阶马尔可夫随机场对图像全局信息的约束能力,在颜色衰减先验的基础上,提出了一种局部一致马尔可夫随机场(Markov random fields,MRF)单幅图像去雾算法。首先,结合颜色衰减和暗通道两先验假设的特征,获取普适性更强的介质传输图粗估计,然后利用基于颜色特征的图像局部一致块代替MRF的二阶及其高阶能量项来构造代价函数,达到优化介质传输图和获取最终去雾图像的目的。实验结果表明,所提算法可以获取细节保持更好且鲁棒性更强的去雾效果。