您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MixHop-and-N-GCN:“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”的实现(ICML 2019)-源码

  2. MixHop和N-GCN ⠀ PyTorch实现的“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”(ICML 2019)和“一个高阶图卷积层”(NeurIPS 2018)。 抽象 最近的方法通过近似图拉普拉斯算子的本征基,将卷积层从欧几里得域推广到图结构数据。 Kipf&Welling的计算效率高且使用广泛的Graph ConvNet过度简化了逼近度,有效地将图形卷积呈现为邻域平均算子。 这种简化限制了模型学习三角算子(图拉普拉斯算子的前提)的作用。 在这项工作中,我们提出了一个
  3. 所属分类:其它

    • 发布日期:2021-02-06
    • 文件大小:1048576
    • 提供者:weixin_42157166