点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - MixHop-and-N-GCN:“MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”的实现(ICML2019)-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
MixHop-and-N-GCN:“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”的实现(ICML 2019)-源码
MixHop和N-GCN ⠀ PyTorch实现的“ MixHop:通过稀疏邻域混合进行的高阶图卷积体系结构”(ICML 2019)和“一个高阶图卷积层”(NeurIPS 2018)。 抽象 最近的方法通过近似图拉普拉斯算子的本征基,将卷积层从欧几里得域推广到图结构数据。 Kipf&Welling的计算效率高且使用广泛的Graph ConvNet过度简化了逼近度,有效地将图形卷积呈现为邻域平均算子。 这种简化限制了模型学习三角算子(图拉普拉斯算子的前提)的作用。 在这项工作中,我们提出了一个
所属分类:
其它
发布日期:2021-02-06
文件大小:1048576
提供者:
weixin_42157166