您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. dynamic bayesian

  2. Dynamic Bayesian Networks: Representation, Inference and Learning by Kevin Patrick Murphy
  3. 所属分类:专业指导

    • 发布日期:2009-08-25
    • 文件大小:1048576
    • 提供者:shenyan008
  1. Channel Coding in Communication Networks

  2. Homage to Alain Glavieux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Chapter 1. Information Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Gérard BATTAIL 1.1. Introduction: the Shannon paradigm . . . . . . . . .
  3. 所属分类:C

    • 发布日期:2009-08-30
    • 文件大小:3145728
    • 提供者:ethanpad
  1. Dynamic Bayesian Networks:Representation, Inference and Learning

  2. 这是一个关于动态贝叶斯网络推理学习表示的博士论文,写得很好,同时其官网上有相应的MATLAB工具可以下载
  3. 所属分类:网络基础

    • 发布日期:2010-01-20
    • 文件大小:1048576
    • 提供者:npxxy1
  1. PROTOCOLS AND ARCHITECTURES FOR WIRELESS SENSOR NETWORKS

  2. Preface xiii List of abbreviations xv A guide to the book xxiii 1 Introduction 1 1.1 The vision of Ambient Intelligence 1 1.2 Application examples 3 1.3 Types of applications 6 1.4 Challenges for WSNs 7 1.4.1 Characteristic requirements 7 1.4.2 Requ
  3. 所属分类:Access

    • 发布日期:2010-05-01
    • 文件大小:12582912
    • 提供者:shl5201986
  1. Dynamic Bayesian Networks: Representation, Inference and Learning

  2. classic work of Dynamic Bayesian Networks(DBNs)
  3. 所属分类:Java

    • 发布日期:2008-07-15
    • 文件大小:1048576
    • 提供者:dmgf
  1. Basic Theory of Fuzzy Bayesian Networks

  2. Bayesian network is an effective uncertain knowledge representation and reasoning method. Fuzzy sets can be used for expressing fuzzy events or fuzzy objectives in some special region. Combining these two theories, this paper discusses the probabili
  3. 所属分类:系统安全

    • 发布日期:2013-01-20
    • 文件大小:242688
    • 提供者:kingstone_ls
  1. Information-Theoretic Aspects of Neural Networks

  2. Preface Chapter 1—Introduction 1.1 Neuroinformatics 1.1.1 Neural Memory: Neural Information Storage 1.1.2 Information-Traffic in the Neurocybernetic System 1.2 Information-Theoretic Framework of Neurocybernetics 1.3 Entropy, Thermodynamics and Infor
  3. 所属分类:C#

    • 发布日期:2008-10-06
    • 文件大小:9437184
    • 提供者:giliwala
  1. recent developments in deep neural networks

  2. hinton的关于deeplearning的representation
  3. 所属分类:讲义

    • 发布日期:2014-12-23
    • 文件大小:1048576
    • 提供者:u012878523
  1. Representation Learning A Review and New Perspectives

  2. The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data.
  3. 所属分类:专业指导

    • 发布日期:2015-05-21
    • 文件大小:1048576
    • 提供者:lengwuqin
  1. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

  2. Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224224) input image. This requirement is “artificial” and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we eq
  3. 所属分类:专业指导

    • 发布日期:2015-05-21
    • 文件大小:3145728
    • 提供者:lengwuqin
  1. Deep Sentence Embedding Using Long Short-Term Memory Networks

  2. This paper develops a model that addresses sentence embedding, a hot topic in current natural language processing research, using recurrent neural networks (RNN) with Long Short-Term Memory (LSTM) cells. The proposed LSTM-RNN model sequentially take
  3. 所属分类:其它

    • 发布日期:2017-03-02
    • 文件大小:1048576
    • 提供者:ken_henderson
  1. Springer.Machine.Learning.in.Complex.Networks.2015

  2. Machine learning stands as an important research area that aims at developing computational methods capable of improving their performances with previously acquired experiences. Although a large amount of machine learning techniques has been propose
  3. 所属分类:其它

    • 发布日期:2017-08-09
    • 文件大小:8388608
    • 提供者:daer_jun
  1. 卷积神经网络模型压缩技术(Hardware-oriented Approximation of Convolutional Neural Networks)

  2. High computational complexity hinders the widespread usage of Convolutional Neural Networks (CNNs), especially in mobile devices. Hardware accelerators are arguably the most promising approach for reducing both execution time and power consumption.
  3. 所属分类:深度学习

    • 发布日期:2018-06-13
    • 文件大小:1048576
    • 提供者:azureskyy
  1. Deep Convolutional Generative Adversarial Networks

  2. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.pdf
  3. 所属分类:深度学习

    • 发布日期:2018-01-21
    • 文件大小:7340032
    • 提供者:hlw787075497
  1. OUTLIER DETECTION IN GRAPHS AND NETWORKS

  2. Graphs represent one of the most powerful and general forms of data representation, which can express diverse data, ranging from multi- dimensional entity-relation graphs, the web, social networks, commu- nication networks, and biological and chemic
  3. 所属分类:讲义

    • 发布日期:2019-03-06
    • 文件大小:587776
    • 提供者:qq_20550227
  1. Stanford 大学--Analysis of Networks课程13-19-PPT.rar

  2. Stanford 大学--Analysis of Networks课程13-19章 Handouts Info Sheet Lecture 01 - 09/25 Course Introduction and Structure of Graphs Lecture 02 - 09/27 Measuring Networks, and Random Graph Model Lecture 03 - 10/02 Link Analysis: PageRank Lect
  3. 所属分类:算法与数据结构

    • 发布日期:2019-07-15
    • 文件大小:216006656
    • 提供者:jerry107218787
  1. 【9】Speech recognition with deep recurrent neural networks.pdf

  2. Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is u
  3. 所属分类:深度学习

    • 发布日期:2019-08-26
    • 文件大小:422912
    • 提供者:xinghaoyan
  1. 【10】Towards End-to-End Speech Recognitionwith Recurrent Neural Networks.pdf

  2. This paper presents a speech recognition system that directly transcribes audio data with text, without requiring an intermediate phonetic representation. The system is based on a combination of the deep bidirectional LSTM recurrent neural network a
  3. 所属分类:深度学习

    • 发布日期:2019-08-26
    • 文件大小:476160
    • 提供者:xinghaoyan
  1. 刘知远-Introduction to Graph Neural Networks.pdf

  2. Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing wi
  3. 所属分类:深度学习

    • 发布日期:2020-04-01
    • 文件大小:23068672
    • 提供者:weixin_40359938
  1. Noisy Networks for Exploration.pdf

  2. 关于Noisy Networks for Exploration dqn的原始论文,适合初学者对深度强化学习Noisy Networks for Exploration dqn的认识和了解Published as a conference paper at ICLR 2018 T is assessed by the action-value function Q defined as Q"(.a)=配 ∑ rR(t, at) (1) where E is the expectation ove
  3. 所属分类:讲义

    • 发布日期:2019-09-02
    • 文件大小:5242880
    • 提供者:m0_37384317
« 12 3 4 5 6 7 »