软手是将顺应性元素嵌入其机械设计中的机器人系统。这样可以有效地适应物品和环境,并最终提高其抓握性能。如果与经典的刚性手相比,这些手在人性化操作方面具有明显的优势,即易于使用和坚固耐用。但是,由于缺乏合适的控制策略,它们在自主控制方面的潜力仍未得到开发。为了解决这个问题,在这项工作中,我们提出了一种方法,可以从观察人类策略开始,使软手能够自主地抓握物体。通过深度神经网络实现的分类器将要抓取的物体的视觉信息作为输入,并预测人类将执行哪些操作来实现目标。因此,此信息用于从一组人类启发的原语中选择一个,