点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - PCB技术中的PCB传输线参数
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
pads9.0电子设计软件
PADS 9.0版产品的出现标志着下一代PADS流程技术的诞生。与以往的旧产品相比, PADS 9.0修复和改善了之前版本软件的不足和缺点,集成了许多全新的功能,拥有了更高的可扩展性和集成度,从而使设计者能够结合Mentor Graphics众多独特的创新技术,实现设计、分析、制造和多平台的协作。而且, 与PADS 9.0的可扩展定制流程策略相对应,Mentor Graphics提供了一系列预置的PADS套件,使之能够满足各种产品设计不同的技术要求,然而代价却十分低廉。LS和ES产品包就是因应
所属分类:
嵌入式
发布日期:2009-12-15
文件大小:29696
提供者:
cadeda2009
高速PCB的信号完整性_电源完整性和电磁兼容性研究
随着高速数字电路和高集万成度芯片技术的飞速发展,电路中的信号完整性! 电源完整性和电磁兼容性问题日益严重"这些问题的出现给系统硬件设计带来 了更大的挑战,高速CPB的信号完整性!电源完整性和电磁兼容性设计己经成为 系统设计能否成功的主要因素"本文研究了高速PCB的信号完整性!电源完整性 和电磁兼容性问题及其解决方法" 首先,本文介绍了高速FCB设计中存在的信号完整性!电源完整性和电磁 兼容问题,并总结了国内外的研究现状" 其次,在阐述传输线理论的基础上,详细分析了高速CPB设计中的信号完 整性
所属分类:
硬件开发
发布日期:2013-02-19
文件大小:5242880
提供者:
pengwangguo
高速多板系统信号完整性建模与仿真技术研究
本文对板级信号完整性关键因素!传输线模型及其高频效应!反射与串扰!高速串行数据传输SERDES基本架构和高速信号仿真模型结构进行了深入的研究"在提出理论方法的基础上,对多种过孔和差分过孔进行建模和参数优化,并对仿真结果进行了频域和时域上的分析"为了达到精度和速度的平衡,本文在高速电路分析和仿真中将/场0/路0结合的方法贯彻至终"研究的模型不仅有时域电路模型,如阳Bufl飞:的SPICE和IBIS模型,还有频域的电磁场模型,如背板连接器的S参数模型,并通过仿真验证了模型的正确有效性"最后使用测试
所属分类:
硬件开发
发布日期:2013-02-19
文件大小:6291456
提供者:
pengwangguo
高速数字PCB互连设计信号完整性研究
随着数字系统时钟频率越来越高,信号跳变时间越来越短,高速数字PCB的互连设 计对整个系统电气性能的影响也越来越大"高速系统中,高速信号经过互连线时会产生一系列的信号完整性(Signalhitegrity,简称sI)问题"因此,如何处理由高速互连引起sI问题,己成为高速数字系统设计成功与否的关键问题之一" 本文主要研究由高速无源互连单元所引起的延时!反射!串扰!不连续性等SI问题" 首先分析了反射和串扰发生的机理,并给出了通过端接技术减小反射的仿真波形和通过改变传输线参数对串扰影响的仿真波形,得
所属分类:
硬件开发
发布日期:2013-02-19
文件大小:9437184
提供者:
pengwangguo
布线规则.txt
3 1. 一般规则 1.1 PCB板上预划分数字、模拟、DAA信号布线区域。 1.2 数字、模拟元器件及相应走线尽量分开并放置於各自的布线区域内。 1.3 高速数字信号走线尽量短。 1.4 敏感模拟信号走线尽量短。 1.5 合理分配电源和地。 1.6 DGND、AGND、实地分开。 1.7 电源及临界信号走线使用宽线。 1.8 数字电路放置於并行总线/串行DTE接口附近,DAA电路放置於电话线接口附近。 2. 元器件放置 2.1 在系统电路原理图中: a) 划分数字、模拟、DAA电路及其相关电
所属分类:
硬件开发
发布日期:2019-05-23
文件大小:14336
提供者:
qq_33237941
PCB技术中的开关电源设计中PCB板各环节需要注意的问题
在开关电源设计中PCB板的物理设计都是最后一个环节, 如果设计方法不当, PCB 可能会辐射过多的电磁干扰, 造成电源工作不稳定, 以下针对各个步骤中所需注意的事项进行分析: 从原理图到PCB 的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》CAM 输出。 元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如, 如果印制板两
所属分类:
其它
发布日期:2020-10-16
文件大小:136192
提供者:
weixin_38663443
嵌入式系统/ARM技术中的高速数字电路的串音现象研究方案
现在的消费者喜欢高速化小型化的电子产品,信号、电路板成等因素,会影响完整性,串扰现象是其中最常见的,本文正是进行探讨。 1 串音产生的机理 常见电子电路信号是大于实际的,所以PCB上的信号线被认为足够精度的,但是当频率变高时,误差就会变得相当的大,所以考虑时需要分2个阶段。采用的方法就是分布参数模式,其方法是将传输线分成很小的片段,每一小片段可用电阻、电容及电感代表小片段的电路行为,将每一小片段整合起来即为整个电路行为。当高频电流通过传输线时,导线将产生热耗,这表明导线具有分布电阻;由于
所属分类:
其它
发布日期:2020-10-23
文件大小:264192
提供者:
weixin_38532139
PCB技术中的印制电路板信号损耗测试技术
摘要:在印制电路板设计、生产等过程中,传输线的信号损耗是板材应用性能的重要参数。信号损耗测试是印制电路板的信号完整性的重要表征手段之一。本文介绍了目前业界使用的几种PCB传输线信号损耗测量方法的原理和相关应用,并分析了其优势和限制。 1 前言 印制电路板(PCB)信号完整性是近年来热议的一个话题,国内已有很多的研究报道对PCB信号完整性的影响因素进行分析[1]-[4],但对信号损耗的测试技术的现状介绍较为少见。 PCB传输线信号损耗来源为材料的导体损耗和介质损耗,同时也受到铜
所属分类:
其它
发布日期:2020-10-20
文件大小:345088
提供者:
weixin_38565221
PCB技术中的PCB特性影响电源分配网络(PDN)性能
电源分配网络(PDN)的基本设计规则告诉我们,最好的性能源自一致的、与频率无关的(或平坦)的阻抗曲线。这是电源稳定性非常重要的一个理由,因为稳定性差的电源会导致阻抗峰值,进而劣化平坦的阻抗曲线,以及受电电路的性能。 由于没有阻抗路径是完全平坦的,所以我们需要做一些设计调整。本文旨在帮助你做出一些对系统性能影响最小的折衷。 源阻抗应该匹配传输线阻抗。 一般来说,这是S参数测量和所有射频设备的基本前提。源阻抗(最常见的是50Ω)连接到阻抗与源匹配的同轴电缆,负载也端接到相同的阻抗。
所属分类:
其它
发布日期:2020-10-19
文件大小:387072
提供者:
weixin_38551431
PCB技术中的影响印刷电路板(PCB)的特性阻抗因素及对策
摘要:本文给出了印刷电路板(PCB)特性阻抗的定义,分析了影响特性阻抗的因素及PCB的构造参数对特性阻抗精度的影响.最后给出了一些对策。0 引 言 我国正处在以经济建设为中心和改革开放的大好形势下,电子工业的年增长率会超过20%,印刷电路板工业依附整个电子工业也会随势而涨.而且超过20%的增长速度。世界电子工业领域发生的技术革命和产业结构变化.正为印刷电路的发展带来新的机遇和挑战。印刷电路随着电子设备的小型化、数字化、高频化和多功能化发展.作为电子设备中电气的互连件—PCB中的金属导
所属分类:
其它
发布日期:2020-11-18
文件大小:143360
提供者:
weixin_38713061
PCB技术中的高速电路PCB的网络、传输线、信号路径和走线
严格地讲,网络是一个限于低速、集总参数电路的概念。如图1所示,不管元件Pl的引脚A到元件R1、P2、P3的B、C、D引脚互连用哪种物理连接(微带线、带状线、同轴电缆还是跳线),也不管中间是否经历过孔或是线宽变化,引脚B、C、D上都能实时和不失真地反映引脚A的波形变化。当然,这是一种理想状况,然而对于低速信号是合理的,因此,A、B、C、D之间的任何连接为一个网络(节点),如图1所示的黑线为网络Netl。 但是,对于高速信号,如第3章所讲的就完全不是这样了,一个信号从引脚A输出,到达D可能完全
所属分类:
其它
发布日期:2020-11-16
文件大小:67584
提供者:
weixin_38523618
PCB技术中的高速电路与射频电路的区别
什么是射频电路?随着频率的升高,相应的电磁波波长变得可与分立电路元件的尺寸相比拟时,电路上的导线、电阻、电容和电感这些元件的电响应开始偏移其理想频率特性。一般将射频定义在30 MHz~4 GHz频段,比射频高的频率称为微波。 一个数字系统的时钟频率本身可能很高,已经处于射频范围内,或者其时钟频率不够高,但其谐波频率却落在射频范围内。所以,一个高速系统,因其信号存在高频成分,电路上的元件呈现分布参数特性,互连系统表现出传输线效应。所以,在设计高速电路时,应具备射频微波知识是很有必要的。
所属分类:
其它
发布日期:2020-11-16
文件大小:34816
提供者:
weixin_38725086
PCB技术中的PCB传输线参数
传输线有两个非常重要的特征:特征阻抗和时延。可以利用这两个特征来预测和描述信号与传输线的大多数相互行为。 特征阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,它是传输线的固有属性,仅和传输线的单位长度上的分布电感L、分布电容C、材料特性和介电常数有关,与传输线长度无关。宽度变化的导线没有固定的特征阻抗,只有导线的几何结构和材料特性保持不变,那么传输线的特征阻抗就是恒定的。 传输线的特征阻抗为 在传输线理论书籍中,更完整的特征阻抗表达方式为 式中,R,G分别为阻抗和
所属分类:
其它
发布日期:2020-11-16
文件大小:102400
提供者:
weixin_38522529
PCB技术中的基于高速PCB传输线建模的仿真
摘要:在高速印刷电路板(PCB)设计中,逻辑门元器件速度的提高,使得PCB传输线效应成了电路正常工作的制约因素。对传输线做计算机仿真,可以找出影响信号传输性能的各种因素,优化信号的传输特性。采用全电荷格林函数法结合矩量法提取高速PCB传输线分布参数并建立等效时域网络模型,应用端接I/O缓冲器IBIS瞬态行为模型,对实际PCB布线进行电气特性仿真,其结果与Cadence公司的SPECCTRAQUEST软件仿真结果一致,且仿真效率得到提高。 关键词:传输线;全电荷格林函数法;高速印刷电路板;I
所属分类:
其它
发布日期:2020-12-04
文件大小:212992
提供者:
weixin_38737335
基于高速PCB传输线建模的仿真
摘要:在高速印刷电路板(PCB)设计中,逻辑门元器件速度的提高,使得PCB传输线效应成了电路正常工作的制约因素。对传输线做计算机仿真,可以找出影响信号传输性能的各种因素,优化信号的传输特性。采用全电荷格林函数法结合矩量法提取高速PCB传输线分布参数并建立等效时域网络模型,应用端接I/O缓冲器IBIS瞬态行为模型,对实际PCB布线进行电气特性仿真,其结果与Cadence公司的SPECCTRAQUEST软件仿真结果一致,且仿真效率得到提高。 关键词:传输线;全电荷格林函数法;高速印刷电路板;I
所属分类:
其它
发布日期:2021-01-20
文件大小:260096
提供者:
weixin_38746018
影响印刷电路板(PCB)的特性阻抗因素及对策
摘要:本文给出了印刷电路板(PCB)特性阻抗的定义,分析了影响特性阻抗的因素及PCB的构造参数对特性阻抗精度的影响.给出了一些对策。0 引 言 我国正处在以经济建设为中心和改革开放的大好形势下,电子工业的年增长率会超过20%,印刷电路板工业依附整个电子工业也会随势而涨.而且超过20%的增长速度。世界电子工业领域发生的技术革命和产业结构变化.正为印刷电路的发展带来新的机遇和挑战。印刷电路随着电子设备的小型化、数字化、高频化和多功能化发展.作为电子设备中电气的互连件—PCB中的金属导线,
所属分类:
其它
发布日期:2021-01-20
文件大小:173056
提供者:
weixin_38693589
印制电路板信号损耗测试技术
摘要:在印制电路板设计、生产等过程中,传输线的信号损耗是板材应用性能的重要参数。信号损耗测试是印制电路板的信号完整性的重要表征手段之一。本文介绍了目前业界使用的几种PCB传输线信号损耗测量方法的原理和相关应用,并分析了其优势和限制。 1 前言 印制电路板(PCB)信号完整性是近年来热议的一个话题,国内已有很多的研究报道对PCB信号完整性的影响因素进行分析[1]-[4],但对信号损耗的测试技术的现状介绍较为少见。 PCB传输线信号损耗为材料的导体损耗和介质损耗,同时也受到铜箔电
所属分类:
其它
发布日期:2021-01-19
文件大小:343040
提供者:
weixin_38641764