您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. PFWG改进的CNN多光谱遥感图像分类

  2. 为了实现在遥感图像处理过程中准确地提取到有效地物信息, 缩短分类用时, 将卷积神经网络(CNN)模型引入遥感图像地物分类, 首先提出由图片模糊加权平均(PFWG)改进的CNN分类方法, 利用模糊几何聚类算法作为预处理单元对实验样本进行特征规划, 并对遥感地物信息进行多源特征决策, 简化了分类过程, 加快了CNN模型的收敛速度。实验结果表明, 利用PFWG改进的CNN分类方法总体分类精度达到了93.73%; Kappa系数为0.94。该方法有效地弥补了CNN自身对遥感图像分类不够细腻、表达效果差的
  3. 所属分类:其它

    • 发布日期:2021-02-12
    • 文件大小:9437184
    • 提供者:weixin_38664469