您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于改进粒子群的采煤机齿轮箱故障诊断

  2. 采煤机截割部摇臂齿轮箱承担着综采工作面截割部动力传动的重任,其故障与否直接影响采煤机正常工作。而传统的故障诊断方法-BP神经网络采用基于梯度下降的算法,存在容易陷入局部极小值、收敛速度慢等不足,这些不足严重影响了BP网络的应用。然而粒子群算法(PSO)有很好的全局收敛特性。因此,为了提高网络的性能,采用粒子群算法来优化BP神经网络,将改进的PSO引入神经网络的拓扑结构,用PSO的迭代代替BP中的梯度修正。结果表明:提出的改进方案可以有效地优化神经网络,提高其在采煤机齿轮箱故障诊断中的应用价值。
  3. 所属分类:其它

    • 发布日期:2020-05-15
    • 文件大小:695296
    • 提供者:weixin_38531788
  1. PSO优化BP神经网络齿轮箱故障诊断

  2. 针对目前齿轮箱系统在利用神经网络故障诊断时存在正确识别率低和依靠经验选择参数的问题,提出了基于粒子群优化BP网络的齿轮箱故障诊断方法。简要介绍利用齿轮振动原理提取特征参数建立故障模型,该模型以齿轮箱特征向量为输入、故障类型为输出,详细分析了通过BP神经网络、概率神经网络和粒子群优化BP神经网络实现齿轮箱故障诊断。仿真结果表明,BP神经网络对齿轮箱故障诊断收敛速度慢,故障识别率为82%;概率神经网络的模型故障诊断识别率依据经验选取spread值决定,故障识别率最大为98%;粒子群优化后的BP神经网
  3. 所属分类:其它

    • 发布日期:2020-10-15
    • 文件大小:483328
    • 提供者:weixin_38691482