您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 用PyTorch在一个物体数据库上训练ResNet

  2. 最近几年,在处理语音、图像识别和语言处理等问题上,深度学习有着十分不错的表现。在所有类型神经网络中,卷积神经网络中研究最为深入的。在过去因为没有大数据与高性能的计算设备支撑,想要在不过拟合进行高性能卷积神经网络训练是难以想象的。如今卷积神经网络的飞速发展,离不开出现了ImageNet这样的数据,还有大幅提升的GPU计算性能。尽管各种 CNN 模型仍继续在多种计算机视觉应用中进一步推进当前最佳的表现,但在理解这些系统的工作方式和如此有效的原因上的进展仍还有限。这个问题已经引起了很多研究者的兴趣,
  3. 所属分类:机器学习

    • 发布日期:2018-08-22
    • 文件大小:7340032
    • 提供者:liiukangkang
  1. PyTorch可视化理解卷积神经网络

  2. 本文来自于segmentfault,文章使用图片加代码的形式讲解CNN网络,并对每层的输出进行可视化。如今,机器已经能够在理解、识别图像中的特征和对象等领域实现99%级别的准确率。生活中,我们每天都会运用到这一点,比如,智能手机拍照的时候能够识别脸部、在类似于谷歌搜图中搜索特定照片、从条形码扫描文本或扫描书籍等。造就机器能够获得在这些视觉方面取得优异性能可能是源于一种特定类型的神经网络——卷积神经网络(CNN)。如果你是一个深度学习爱好者,你可能早已听说过这种神经网络,并且可能已经使用一些深度学
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:894976
    • 提供者:weixin_38746918
  1. Conv-Deconv-神经网络--源码

  2. Conv-Deconv-神经网络- 介绍 该项目使用Pytorch [1]实现Zeiler的方法来可视化反卷积神经网络。 还实现了卷积神经网络以帮助测试结果。 网络使用了预训练的VGG16模型和一些图片。 我希望演示一个示例,该示例使用Pytorch编写多个神经网络来视觉化人们,以及在实际编码中使用CNN理论的实践。 尽管本教程仅显示了如何在VGG16中进行Conv / Deconv神经网络。 人们当然可以浏览整个过程并修改代码以应用新型的模型。 我还将包括一些说明,以帮助人们进行修改以应用他
  3. 所属分类:其它

    • 发布日期:2021-02-10
    • 文件大小:3072
    • 提供者:weixin_42165490
  1. PyTorch可视化理解卷积神经网络

  2. 本文来自于segmentfault,文章使用图片加代码的形式讲解CNN网络,并对每层的输出进行可视化。如今,机器已经能够在理解、识别图像中的特征和对象等领域实现99%级别的准确率。生活中,我们每天都会运用到这一点,比如,智能手机拍照的时候能够识别脸部、在类似于谷歌搜图中搜索特定照片、从条形码扫描文本或扫描书籍等。造就机器能够获得在这些视觉方面取得优异性能可能是源于一种特定类型的神经网络——卷积神经网络(CNN)。如果你是一个深度学习爱好者,你可能早已听说过这种神经网络,并且可能已经使用一些深度学
  3. 所属分类:其它

    • 发布日期:2021-01-27
    • 文件大小:882688
    • 提供者:weixin_38733281