您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Python机器学习之决策树算法实例详解

  2. 主要介绍了Python机器学习之决策树算法,较为详细的分析了实例详解机器学习中决策树算法的概念、原理及相关Python实现技巧,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-21
    • 文件大小:81920
    • 提供者:weixin_38739950
  1. Python机器学习算法库scikit-learn学习之决策树实现方法详解

  2. 主要介绍了Python机器学习算法库scikit-learn学习之决策树实现方法,结合实例形式分析了决策树算法的原理及使用sklearn库实现决策树的相关操作技巧,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:276480
    • 提供者:weixin_38642636
  1. Python机器学习之决策树算法实例详解

  2. 本文实例讲述了Python机器学习之决策树算法。分享给大家供大家参考,具体如下: 决策树学习是应用最广泛的归纳推理算法之一,是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,机器学习算法最终将使用这些从数据集中创造的规则。决策树的优点为:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点为:可能产生过度匹配的问题。决策树适于处理离散型和连续型的数据。 在决策树中最重要的就是如何选取
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:83968
    • 提供者:weixin_38643212
  1. Python机器学习算法库scikit-learn学习之决策树实现方法详解

  2. 本文实例讲述了Python机器学习算法库scikit-learn学习之决策树实现方法。分享给大家供大家参考,具体如下: 决策树 决策树(DTs)是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值。 例如,在下面的例子中,决策树通过一组if-then-else决策规则从数据中学习到近似正弦曲线的情况。树越深,决策规则越复杂,模型也越合适。 决策树的一些优势是: 便于说明和理解,树可以可视化表达; 需要很少的数据准备。其他技
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:277504
    • 提供者:weixin_38737283