您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Pytorch保存模型用于测试和用于继续训练的区别详解

  2. 今天小编就为大家分享一篇Pytorch保存模型用于测试和用于继续训练的区别详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:33792
    • 提供者:weixin_38682953
  1. Pytorch保存模型用于测试和用于继续训练的区别详解

  2. 保存模型 保存模型仅仅是为了测试的时候,只需要 torch.save(model.state_dict, path) path 为保存的路径 但是有时候模型及数据太多,难以一次性训练完的时候,而且用的还是 Adam优化器的时候, 一定要保存好训练的优化器参数以及epoch state = { 'model': model.state_dict(), 'optimizer':optimizer.state_dict(), 'epoch': epoch } torch.save(state, p
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:35840
    • 提供者:weixin_38707153