通常期望通过利用未标记的数据可以提高学习性能,尤其是在标记的数据数量有限的情况下。 但是,据报道,在某些情况下,现有的半监督学习方法的效果甚至比仅使用标记数据的监督学习方法还要差。 因此,希望开发出安全的半监督学习方法,当使用未标记的数据时,这种方法不会显着降低学习性能。 本文着重于提高半监督支持向量机(S3VM)的安全性。 首先,提出了S3VM-us方法。 它采用了保守的策略,并且仅使用未标记的实例,这些实例很有可能会有所帮助,同时避免使用高风险的实例。 这种方法可以提高安全性,但是使用未标记