针对细胞图像序列模糊、传统的特征提取方法鲁棒性不强、伪匹配点对较多、图像匹配耗时过长、融合效果不佳等问题,提出了一种强鲁棒性、快速和精确的图像拼接算法.该算法首先用基于尺度不变(SIFT)算法提取细胞图像特征点,接着采用改进的BBF(Best-Bin-First)算法对特征集进行初始的双向匹配,然后采用随机抽样一致性(RANSAC)算法对匹配点对进行进一步提纯并估算出单应性矩阵,最后根据细胞图像序列之间的单应性矩阵关系将其投影到统一标准的平面坐标系下,用具有塔型结构的多分辨率融合算法对图像进行无