基于表面肌电信号(sEMG)的手势识别技术是人机自然交互领域的重要研究方向。手势识别技术的实现关键在于如何提取sEMG信号的有效特征。提出了一种提取sEMG信号稀疏特征用于多类手势识别的有效方法。该方法以稀疏表示作为特征提取工具,以支持向量机(SVM)作为分类器对多个手势进行识别。首先,采用双阈值法检测分割出手势动作的活动段;其次随机抽取部分运动段样本初始化稀疏表示词典,利用KSVD方法对过完备字典和稀疏系数进行无监督更新;最后,利用SVM对稀疏系数特征向量进行分类以实现对不同手势的识别。通过在