点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - SoftwareStoryPointsPrediction:该项目将提供有关如何通过自然语言处理和机器学习从文本描述中自动估计每个软件任务的故事点的背景知识。-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
SoftwareStoryPointsPrediction:该项目将提供有关如何通过自然语言处理和机器学习从文本描述中自动估计每个软件任务的故事点的背景知识。-源码
机器学习和自然语言处理的敏捷开发中的软件工作量预测 软件开发项目的成功除其他因素外,还取决于项目和时间管理。用于帮助敏捷软件开发的时间管理和估计项目时间表的一种流行方法是估计故事点数,该故事点数表示每个单个软件问题或请求的开发工作量(以工时为单位)。在本文中,我们探索了各种文本向量化机器学习技术,以预测以故事点数衡量的软件开发工作量。我们的结果表明,该问题可以表述为分类问题或回归问题,并可以通过监督学习成功解决。此外,我们的几种回归模型比以前的文献具有更高的准确性。我们还证明,与一般的半监督学习
所属分类:
其它
发布日期:2021-03-20
文件大小:1041235968
提供者:
weixin_42161497