您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Stroke_Prediction_6ML_models:该项目使用六个机器学习模型(XGBoost,随机森林分类器,支持向量机,逻辑回归,单决策树分类器和TabNet)进行笔画预测。 为此,我使用了Kaggle的“ healthcare-

  2. Stroke_Prediction_6ML_models 该项目使用六个机器学习模型(XGBoost,随机森林分类器,支持向量机,逻辑回归,单决策树分类器和TabNet)进行笔画预测。 为此,我使用了Kaggle的“ healthcare-dataset-stroke-data”。 为了确定哪种模型最适合进行笔画预测,我绘制了每种模型的曲线下面积(AUC)。 AUC越高,模型越好
  3. 所属分类:其它

    • 发布日期:2021-02-16
    • 文件大小:226304
    • 提供者:weixin_42104181