您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Supervised-learning-of-Many-Body-Localization:一种简单的神经网络结构,用于对多体局部(MBL)和热化相进行分类-源码

  2. 工作正在进行中 许多身体的监督学习 一个简单的神经网络结构,使用纠缠谱作为输入数据,对多体局部和热相进行分类。 该项目的灵感来自Mehta等人撰写的出色的关于物理的机器学习。 Al和随附的Jupyter笔记本。 网络可以采用纠缠谱或波函数(平方)作为输入。 因此,网络的结构(层数,神经元等)将相应更改,以实现最佳性能。 可以使用Keras 提供的贝叶斯优化或Hyperband方法估计最佳超参数。 使用适度的数据量(O(10 ^ 4)项),分类器在测试集上实现了近100%的准确性。 哈密​​
  3. 所属分类:其它

    • 发布日期:2021-03-15
    • 文件大小:17825792
    • 提供者:weixin_42107491