您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Task03 循环神经网络进阶(pytorch代码实现)

  2. 循环神经网络进阶 ⻔控循环神经⽹络(GRU) 当时间步数较⼤或者时间步较小时, 循环神经⽹络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但⽆法解决梯度衰减的问题。通常由于这个原因,循环神经⽹络在实际中较难捕捉时间序列中时间步距离较⼤的依赖关系。 ⻔控循环神经⽹络(GRU):捕捉时间序列中时间步距离较⼤的依赖关系 CNN: GRU: • 重置⻔有助于捕捉时间序列⾥短期的依赖关系; • 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。 GRU pytorch简洁代码实现 import n
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:214016
    • 提供者:weixin_38664612