您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. TextClassification:基于scikit-learn实现对新浪新闻的文本分类,数据集为100w篇文档,总计10类,测试集与训练集1:1划分。分类算法采用SVM和Bayes,其中Bayes作为基线-源码

  2. 新浪新闻文本分类 语料库重建 本项目的语料来源新浪新闻网,通过spider.py爬虫模块获得全部语料,总计获得10类新闻文本,每一类新闻文本有10条。 采纳新浪新闻网的一个api获取新闻文本,api的url为 使用进度池并发执行爬虫,加快抓取速度。 数据预处理 本项目的数据预处理包括:分词处理,去噪,向量化,由stopwords.py模块,text2term.py模块,vectorizer.py模块实现。 本项目借助第三方库解霸完成文本的分词处理。 通过停用词表移除中文停用词,通过正则表达式消除
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:100352
    • 提供者:weixin_42128270