为深入解析无线传感器网络中上位机接收到的数据包 ,在目前最新的无线传感器网络嵌入式操作系统 Ti nyOS 2 2 . x 平台基础上设计了一套实验 ,成功读取了 MAC 层的数据包. 发现传感器节点采集到的数据首先作为 MAC 层的有效荷载封 包无线传送到基站节点 ,由基站节点将其作为串口消息包的有效荷载再次封包异步传送到传感器网络的上位机端. 该研究对 进一步理解 Ti nyOS 的构架 、 运行机制和通讯机制 ,开发相关的应用软件具有一定参考意义
摘要:为解决现Z-Stack定位程序代码量大,结构复杂等问题,提出一种基于TinyOS的CC2430定位方案。在分析TinyOS组件架构基础上,设计实现盲节点、锚节点与汇聚节点间的无线通信以及汇聚节点与PC机的串口通信。在此基础上实现PC对各锚节点RSSI(Received Signal Strength Indicator)寄存器值的正确读取,确定实验室环境下对教-常态无线传播模型的具体参数,并采用质心算法来提高定位精度。实验显示,在由四个锚节点组成的4.8x3.6m2矩形定位区域中,通过RS
为解决现Z-Stack定位程序代码量大,结构复杂等问题,提出一种基于TinyOS的CC2430定位方案。在分析TinyOS组件架构基础上,设计实现盲节点、锚节点与汇聚节点间的无线通信以及汇聚节点与PC机的串口通信。在此基础上实现PC对各锚节点RSSI(Received Signal Strength Indicator)寄存器值的正确读取,确定实验室环境下对数-常态无线传播模型的具体参数,并采用质心算法来提高定位精度。实验显示,在由四个锚节点组成的4.8×3.6 m2矩形定位区域中,通过RSSI
摘要:为解决现Z-Stack定位程序代码量大,结构复杂等问题,提出一种基于TinyOS的CC2430定位方案。在分析TinyOS组件架构基础上,设计实现盲节点、锚节点与汇聚节点间的无线通信以及汇聚节点与PC机的串口通信。在此基础上实现PC对各锚节点RSSI(Received Signal Strength Indicator)寄存器值的正确读取,确定实验室环境下对教-常态无线传播模型的具体参数,并采用质心算法来提高定位精度。实验显示,在由四个锚节点组成的4.8x3.6m2矩形定位区域中,通过RS