点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - XGBoost(extremegradientboosting)的使用例子
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
XGBoost(extreme gradient boosting)的使用例子
梯度提升模型(gradient boosting):它是目前在结构化数据中表现最好的模型。和随机森林类似,都是集成学习的方法。随机森林是将多个决策树的预测值取平均。梯度提升梯度是一种通过循环迭代将模型添加到集合中集成的方法。它首先用单个模型初始化集合,其预测可能非常稚拙的。(即使它的预测非常不准确,随后对集合的添加也会解决这些错误。) 迭代过程: 首先,我们使用当前模型集合为数据集中的每个观测生成预测。为了进行预测,我们将集合中所有模型的预测相加。 用这些预测计算损失函数(例如,均方误差)。 然
所属分类:
其它
发布日期:2021-01-06
文件大小:64512
提供者:
weixin_38722184