您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于sklearn实现Bagging算法(python)

  2. 主要为大家详细介绍了基于sklearn实现Bagging算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:63488
    • 提供者:weixin_38630324
  1. python 进行各种回归

  2. 基本回归:线性、决策树、SVM、KNN 集成方法:随机森林、Adaboost、GradientBoosting、Bagging、ExtraTrees ##学会了数据分层抽样,以及各种回归的代码书写。可能还需要注意调参等。 继续学习网址:使用sklearn做各种回归 数据准备 from matplotlib import pyplot as plt %matplotlib inline plt.style.use('fivethirtyeight') #设置matplotlib作图风格 impo
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:107520
    • 提供者:weixin_38697659
  1. Python多进程库multiprocessing中进程池Pool类的使用详解

  2. 问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果。没错!类似bagging ensemble!只是我没有抽样。文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic。可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种。我真
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:180224
    • 提供者:weixin_38564085