情感分析旨在分类出文本在不同方面的情感倾向。在长文本的方面级情感分析中,由于长文本存在一定冗余性和噪声大的问题,导致现有的方面级情感分析方法对于长文本中方面相关信息的特征提取不够充分,分类不精准;在方面分层为粗粒度和细粒度方面的数据集上,现有的解决方法没有利用粗粒度方面中的信息。针对以上问题,提出基于文本筛选和改进BERT的算法TFN+BERT-Pair-ATT。该算法首先利用长短时记忆网络(LSTM)和注意力机制相结合的文本筛选网络(TFN)从长文本中直接筛选出与粗粒度方面相关的部分语句,然后