基于密度的聚类算法实现 perl实现 DBSCAN(Density-Based Spatial Clustering of Applacations with Noise)是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。
这几天由于工作需要,对DBSCAN聚类算法进行了C++的实现。时间复杂度O(n^2),主要花在算每个点领域内的点上。算法很简单,现共享大家参考,也希望有更多交流。 数据点类型描述如下: 代码如下:#include using namespace std; const int DIME_NUM=2; //数据维度为2,全局常量 //数据点类型 class DataPoint { private: unsigned long dpID; //数据