传统基于降维技术的人脸特征提取需要将图像转换成更高维的向量,从而加剧维数灾难问题,对于采用Fisher优化准则的特征提取,这也会使小样本问题更加突出.基于图像的矩阵表示,本文提出了一种新的基于大间距准则和矩阵双向投影技术的人脸特征提取方法(Maximum margin criterion and image matrix bidirectional projection,MMC-MBP).该方法一方面在计算散度矩阵时引入了能保持数据局部性的Laplacian矩阵,以保持数据的流形结构,从而提高识