您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 浅谈Keras中shuffle和validation_split的顺序

  2. 模型的fit函数有两个参数,shuffle用于将数据打乱,validation_split用于在没有提供验证集的时候,按一定比例从训练集中取出一部分作为验证集 这里有个陷阱是,程序是先执行validation_split,再执行shuffle的,所以会出现这种情况: 假如你的训练集是有序的,比方说正样本在前负样本在后,又设置了validation_split,那么你的验证集中很可能将全部是负样本 同样的,这个东西不会有任何错误报出来,因为Keras不可能知道你的数据有没有经过shuffle,保险
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:58368
    • 提供者:weixin_38555304
  1. 在Keras中利用np.random.shuffle()打乱数据集实例

  2. 我就废话不多说了,大家还是直接看代码吧~ from numpy as np index=np.arange(2000) np.random.shuffle(index) print(index[0:20]) X_train=X_train[index,:,:,:]#X_train是训练集,y_train是训练标签 y_train=y_train[index] 补充知识:Keras中shuffle和validation_split的顺序 模型的fit函数有两个参数,shuffle用于将数据打乱,
  3. 所属分类:其它

    • 发布日期:2020-12-17
    • 文件大小:43008
    • 提供者:weixin_38700240