点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - kmeans协同过滤
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
mahout 0.4版本
Mahout 0.4机器学习开源项目从大 量原始数据中解析出相关信息的需求急剧增长,以致于聚类、协同过滤和分类等机器学习技术的需 求也是呈稳定增长势态。
所属分类:
Java
发布日期:2011-08-23
文件大小:4194304
提供者:
wwn2012
聚类算法-kmeans划分型聚类
目前主要有两类协同过滤推荐算法: 基于用户的协同过 滤推荐算法[7, 8 ]和基于项目的协同过滤推荐算法[9212 ]. 基于用 户的协同过滤推荐算法基于这样一个假设, 即如果用户对一 些项目的评分比较相似, 则他们对其他项目的评分也比较相 似. 算法根据目标用户的最近邻居(最相似的若干用户) 对某 个项目的评分逼近目标用户对该项目的评分[1, 7, 8 ]. 基于项目 的协同过滤推荐算法认为, 用户对不同项目的评分存在相似 性, 当需要估计用户对某个项目的评分时, 可以用户对该项目 的若干相
所属分类:
专业指导
发布日期:2011-08-24
文件大小:311296
提供者:
best_cruze
机器学习常用各类算法详解
01-机器学习_(python数据类型详解) 01-机器学习_(python语言与numpy库) 02-机器学习_(knn分类算法与应用) - 简化版 03-机器学习_(贝叶斯分类算法与应用) 04-机器学习_(kmeans聚类算法与应用) 05-机器学习_(协同过滤推荐算法与应用) 06-机器学习_(决策树分类算法与应用) 07-机器学习_(lineage回归分类算法与应用)
所属分类:
Python
发布日期:2018-08-22
文件大小:1048576
提供者:
ka7iu
机器学习复习资料
机器学习复习资料,包括kmeans聚类算法,随机梯度下降法,协同过滤,过拟合,欠拟合,正则化线性回归
所属分类:
机器学习
发布日期:2019-03-12
文件大小:238592
提供者:
devinzkx
基于用户/项目的混合协同过滤推荐算法的推荐原理、推荐过程、代码实现 混合推荐算法 聚类、属性、评分混合推荐项目代码实现
目前商用的推荐机制都为混合式推荐,将用户属性、项目属性、用户操作行为、聚类算法、基于用户、基于项目、基于内容等混合推荐。本文主要介绍混合推荐的推荐原理、推荐过程、代码实现。 一、基于用户/项目的混合协同过滤推荐算法推荐原理 混合推荐可使用的数据包括: 1、用户属性:用户位置、用户性别、用户年龄等属性信息; 2、项目属性:项目类别、项目添加时间、项目内容等属性信息; 3、用户操作行为:用户评分、收藏记录、浏览记录、观看时长、购买记录等操作行为; 混合推荐方法可以是先将数据进行聚类(用户聚类、项目聚
所属分类:
其它
发布日期:2021-01-07
文件大小:45056
提供者:
weixin_38606466
基于KMeans聚类的协同过滤推荐算法推荐原理、过程、代码实现 Canopy聚类算法 KMeans+Canopy聚类算法 聚类算法程序实现 KMEans聚类算法代码java
基于KMeans聚类的协同过滤推荐算法可运用于基于用户和基于项目的协同过滤推荐算法中,作为降低数据稀疏度和提高推荐准确率的方法之一,一个协同过滤推荐过程可实现多次KMeans聚类。 一、基于KMeans聚类的协同过滤推荐算法推荐原理 KMeans聚类算法是聚类算法中最基础最常用、最重要的聚类算法。KMeans聚类算法首先需要确定N个初始中心点,初始中心点的选择对聚类结果影响很大,常用的初始中心点的选择有随机选择、自定义、采用Canopy聚类算法结果作为初始中心点,然后是重复遍历点与簇中心的距离,
所属分类:
其它
发布日期:2021-01-07
文件大小:502784
提供者:
weixin_38522253
“高频面经”之机器学习篇
注:机器学习注重原理理解、算法对比及场景使用,应加强算法公式推导及多场景实战。以下试题为作者日常整理的通用高频面经,包含题目,答案与参考文章,欢迎纠正与补充。 更多内容尽在公众号: 目录 1.常见分类算法及应用场景 2.逻辑回归推导 3.SVM相关问题 4.核函数使用 5.生成模型和判别模型基本形式 6.ID3,C4.5和CART区别 7.交叉熵公式原理 8.L1和L2正则化的区别 9.传统机器学习模型有哪些 10.k-means算法流程 11.DBSCAN和Kmeans对比 12
所属分类:
其它
发布日期:2021-01-07
文件大小:574464
提供者:
weixin_38523618