点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - matlab非支配解
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
基于人工鱼群算法的多目标分布式配电网重构研究
配电网重构是优化配电网络的主要措施,是指在满足支路载流、电压等约束条件下,决策联络开关或分段开关的状态,寻求最佳的辐射网络结构,使网损最小或以最优方式恢复供电。配电网络重构在数学上是一个多目标非线性混合优化问题,基于人工鱼群算法研究配电网重构,解决多目标投资组合问题,对并网后的配电网优化运行管理具有重要的理论意义和实际意义: 1、 首先求出多目标优化问题的Pareto最优解集,然后根据具体要求从Pareto最优解集中选出一个或几个解作为最终的方案。这种后评价方法相比先评价方法具有能得到优化问题
所属分类:
其它
发布日期:2018-10-13
文件大小:3145728
提供者:
programmer0000
Matlab多目标粒子群算法MOPSO与实例
使用matlab编程,分为多个.m文件编写,包括支配关系选择,全局领导者选择,删除多于的非劣解,创建栅格,标准测试函数 Mycost1为ZDT1测试函数 Mycost3有约束条件 套用算法只需要改动Mycost函数与主函数中粒子的取值与维度,即主函数中问题定义处与MOPSO设置处,其余不需要改动
所属分类:
其它
发布日期:2020-03-30
文件大小:7168
提供者:
qq_42891559
(2020更新)Matlab非支配排序遗传算法 PESA-II
基于Pareto的非支配排序遗传算法II (PESA-II)是一种多目标进化优化算法,它利用了遗传算法的机制以及基于Pareto包络的选择。 PESA-II使用外部存档来存储近似的Pareto解决方案。 基于基于档案成员的地理分布创建的网格,从这个外部档案中选择父类和突变体。 这与在MOPSO(这里)算法中使用的机制非常相似。 实际上,PESA-II是一个多目标遗传算法,它使用网格进行选择,并创建下一代。 该算法以结构化的方式实现,如果你熟悉MATLAB编程语言,你会发现在你的研究项目
所属分类:
制造
发布日期:2020-09-17
文件大小:11264
提供者:
sclient_sky