在高维数据分类中,针对多重共线性、冗余特征及噪声易导致分类器识别精度低和时空开销大的问题,提出融合偏最小二乘(Partial Least Squares,PLS)有监督特征提取和虚假最近邻点(False Nearest Neighbors,FNN)的特征选择方法:首先利用偏最小二乘对高维数据提取主元,消除特征之间的多重共线性,得到携带监督信息的独立主元空间;然后通过计算各特征选择前后在此空间的相关性,建立基于虚假最近邻点的特征相似性测度,得到原始特征对类别变量解释能力强弱排序;最后,依次剔除解释