您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. numpy完全详解--jalen.pdf

  2. 1、NumPy介绍; 2、NumPy安装使用; 3、数组的创建; 3.1、概述; 3.2、基本创建方式; 3.3、其他创建ndarray的方式1:函数和文件; 3.4、其他创建ndarray的方式2:随机函数; 4、数组输出; 4.1、输出方式; 4.2、打印省略; 5、数组(ndarray)与列表(List); 5.1、应用对比 ; 5.2、矢量化计算; 5.3、广播机制; 6、相关属性与操作; 7、NumPy中的常数; 8、数据类型; 8.1、概述;
  3. 所属分类:互联网

    • 发布日期:2019-12-29
    • 文件大小:884736
    • 提供者:weixin_41685388
  1. Numpy中对向量、矩阵的使用详解

  2. 主要介绍了Numpy中对向量、矩阵的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:63488
    • 提供者:weixin_38518638
  1. 关于Numpy数据类型对象(dtype)使用详解

  2. 今天小编就为大家分享一篇关于Numpy数据类型对象(dtype)使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:46080
    • 提供者:weixin_38628362
  1. 关于numpy数组轴的使用详解

  2. 今天小编就为大家分享一篇关于numpy数组轴的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:75776
    • 提供者:weixin_38716081
  1. 对numpy中的where方法嵌套使用详解

  2. 今天小编就为大家分享一篇对numpy中的where方法嵌套使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:37888
    • 提供者:weixin_38617846
  1. Python中Numpy mat的使用详解

  2. 主要介绍了Python中Numpy mat的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:44032
    • 提供者:weixin_38621250
  1. Python中Numpy ndarray的使用详解

  2. 主要介绍了Python中Numpy ndarray的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:47104
    • 提供者:weixin_38717171
  1. numpy.linspace函数具体使用详解

  2. 主要介绍了numpy.linspace具体使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:49152
    • 提供者:weixin_38587130
  1. python Cartopy的基础使用详解

  2. 前言 常用地图底图的绘制一般由Basemap或者cartopy模块完成,由于Basemap库是基于python2开发的一个模块,目前已经不开发维护。故简单介绍cartopy模块的一些基础操作。 一、基础介绍 首先导入相关模块。 import numpy as np import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.tick
  3. 所属分类:其它

    • 发布日期:2020-12-16
    • 文件大小:129024
    • 提供者:weixin_38640168
  1. pytorch AvgPool2d函数使用详解

  2. 我就废话不多说了,直接上代码吧! import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2,
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:43008
    • 提供者:weixin_38708841
  1. 基于python及pytorch中乘法的使用详解

  2. numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:28672
    • 提供者:weixin_38626192
  1. Numpy之reshape()使用详解

  2. 如下所示: Numpy中reshape的使用方法为:numpy.reshape(a, newshape, order=’C’) 参数详解: 1.a: type:array_like(伪数组,可以看成是对数组的扩展,但是不影响原始数组。) 需要reshape的array 2.newshape:新的数组 新形状应与原形状兼容。如果是整数,那么结果将是该长度的一维数组。一个形状尺寸可以是-1。在本例中,值是 从数组的长度和剩余维度推断出来的。 3.order: 可选为(C, F, A) C: 按照行来
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:84992
    • 提供者:weixin_38665449
  1. python matplotlib中的subplot函数使用详解

  2. python里面的matplotlib.pylot是大家比较常用的,功能也还不错的一个包。基本框架比较简单,但是做一个功能完善且比较好看整洁的图,免不了要网上查找一些函数。于是,为了节省时间,可以一劳永逸。我把常用函数作了一个总结,最后写了一个例子,以后基本不用怎么改了。 一、作图流程: 1.准备数据, , 3作图, 4定制, 5保存, 6显示 1.数据可以是numpy数组,也可以是list 2创建画布: import matplotlib.pyplot as plt #figure(num=
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:96256
    • 提供者:weixin_38581405
  1. TensorFlow dataset.shuffle、batch、repeat的使用详解

  2. 直接看代码例子,有详细注释!! import tensorflow as tf import numpy as np d = np.arange(0,60).reshape([6, 10]) # 将array转化为tensor data = tf.data.Dataset.from_tensor_slices(d) # 从data数据集中按顺序抽取buffer_size个样本放在buffer中,然后打乱buffer中的样本 # buffer中样本个数不足buffer_size,继续从data数
  3. 所属分类:其它

    • 发布日期:2020-12-23
    • 文件大小:44032
    • 提供者:weixin_38667835
  1. 第四章神经网络的学习算法——随机梯度下降numpy代码详解

  2. 本专栏是书《深度学习入门》的阅读笔记一共八章: 第一章深度学习中的Python基础。主要讲解了深度学习将要用到的python的基础知识以及简单介绍了numpy库和matpoltlib库,本书编写深度学习神经网络代码仅使用Python和numpy库,不使用目前流行的各种深度学习框架,适合入门新手学习理论知识。 第二章感知机。主要介绍了神经网络和深度学习的基本单元感知机。感知机接收多个输入,产生一个输出,单层感知器可以实现与门,或门以及与非门,但是不能实现异或门,异或门的实现需要借助多层感知机,这也
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:96256
    • 提供者:weixin_38616809
  1. Python中Numpy ndarray的使用详解

  2. 本文主讲Python中Numpy数组的类型、全0全1数组的生成、随机数组、数组操作、矩阵的简单运算、矩阵的数学运算。 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便。  定义数组 >>> import numpy as np >>> m = np.array([[1,2,3], [2,3,4]]) #定义矩阵,int64 >>> m array([[1, 2, 3], [2, 3, 4]]) >
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:48128
    • 提供者:weixin_38714761
  1. numpy.linspace函数具体使用详解

  2. numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None) 在指定的间隔内返回均匀间隔的数字。 返回num均匀分布的样本,在[start, stop]。 这个区间的端点可以任意的被排除在外。 Parameters(参数):   start : scalar(标量) The starting value of the sequence(序列的起始点). stop : scalar 序列的结
  3. 所属分类:其它

    • 发布日期:2021-01-01
    • 文件大小:44032
    • 提供者:weixin_38514620
  1. Numpy中对向量、矩阵的使用详解

  2. 在下面的代码里面,我们利用numpy和scipy做了很多工作,每一行都有注释,讲解了对应的向量/矩阵操作。 归纳一下,下面的代码主要做了这些事: 创建一个向量 创建一个矩阵 创建一个稀疏矩阵 选择元素 展示一个矩阵的属性 对多个元素同时应用某种操作 找到最大值和最小值 计算平均值、方差和标准差 矩阵变形 转置向量或矩阵 展开一个矩阵 计算矩阵的秩 计算行列式 获取矩阵的对角线元素 计算矩阵的迹 计算特征值和特征向量 计算点积
  3. 所属分类:其它

    • 发布日期:2021-01-02
    • 文件大小:61440
    • 提供者:weixin_38749305
  1. 关于Numpy数据类型对象(dtype)使用详解

  2. 常用方法 #记住引入numpy时要是用别名np,则所有的numpy字样都要替换 #查询数值类型 >>>type(float) dtype('float64') # 查询字符代码 >>> dtype('f') dtype('float32') >>> dtype('d') dtype('float64') # 查询双字符代码 >>> dtype('f8') dtype('float64') # 获取所有字符代码 >&
  3. 所属分类:其它

    • 发布日期:2021-01-02
    • 文件大小:46080
    • 提供者:weixin_38593723
  1. np.random.seed() 的使用详解

  2. 在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。 我们带着2个问题来进行下列实验 np.random.seed()是否一直有效 np.random.seed(Argument)的参数作用? 例子1 import numpy as np if __name__ == '__main__': i = 0 while (i < 6): if (i < 3): np.random.seed(0) pri
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:65536
    • 提供者:weixin_38722193
« 12 3 4 5 6 »