点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - numpy切片
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Numpy用户指南.pdf
说明:本文档所有内容来源于网络 https://www.numpy.org.cn/user/ 目录 1. NUMPY 介绍 1 1.1 什么是 NUMPY? 1 1.2 为什么 NUMPY 这么快? 3 1.3 还有谁在使用 NUMPY? 3 2. 快速入门教程 4 2.1 先决条件 4 2.2 基础知识 4 2.2.1一个例子 5 2.2.2 数组创建 6 2.2.3 打印数组 8 2.2.4 基本操作 10 2.2.5 通函数 13 2.2.6 索引、切片和迭代 14 2.3 形状操纵 18
所属分类:
互联网
发布日期:2020-05-21
文件大小:2097152
提供者:
weixin_43976705
11-Python计算类库(Numpy)
Python计算类(Numpy)思维导图,便捷整理思路,Numpy是什么?、为什么使用Numpy、Numpy安装、Numpy基础、创建数组并查看、基本运算、常用函数、索引、切片、迭代、形状操作
所属分类:
Python
发布日期:2020-02-21
文件大小:1048576
提供者:
weixin_43555997
numpy完全详解--jalen.pdf
1、NumPy介绍; 2、NumPy安装使用; 3、数组的创建; 3.1、概述; 3.2、基本创建方式; 3.3、其他创建ndarray的方式1:函数和文件; 3.4、其他创建ndarray的方式2:随机函数; 4、数组输出; 4.1、输出方式; 4.2、打印省略; 5、数组(ndarray)与列表(List); 5.1、应用对比 ; 5.2、矢量化计算; 5.3、广播机制; 6、相关属性与操作; 7、NumPy中的常数; 8、数据类型; 8.1、概述;
所属分类:
互联网
发布日期:2019-12-29
文件大小:884736
提供者:
weixin_41685388
numpy库.md
介绍numpy库,数组的基本属性、索引切片、运算、重塑等内容
所属分类:
Python
发布日期:2019-09-01
文件大小:7168
提供者:
aijiankeji
浅析NumPy 切片和索引
主要介绍了NumPy 切片和索引的相关资料,帮助大家更好的理解和学习NumPy的相关知识,感兴趣的朋友可以了解下。
所属分类:
其它
发布日期:2020-09-16
文件大小:43008
提供者:
weixin_38725734
详解Python list 与 NumPy.ndarry 切片之间的对比
主要介绍了详解Python list 与 NumPy.ndarry 切片之间的区别的相关资料,list 切片返回的是不原数据,对新数据的修改不会影响原数据而NumPy.ndarry 的切片返回的是原数据需要的朋友可以参考下
所属分类:
其它
发布日期:2020-09-21
文件大小:28672
提供者:
weixin_38660579
numpy中索引和切片详解
主要介绍了numpy中索引和切片详解,具有一定借鉴价值,需要的朋友可以参考下。
所属分类:
其它
发布日期:2020-09-20
文件大小:93184
提供者:
weixin_38707862
python numpy数组的索引和切片的操作方法
NumPy 是一个 Python 包。 它代表 “Numeric Python”。它是一个由多维数组对象和用于处理数组的例程集合组成的库。这篇文章主要介绍了python numpy 数组的索引和切片,需要的朋友可以参考下
所属分类:
其它
发布日期:2020-09-20
文件大小:45056
提供者:
weixin_38589314
基于numpy中数组元素的切片复制方法
今天小编就为大家分享一篇基于numpy中数组元素的切片复制方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
所属分类:
其它
发布日期:2020-09-19
文件大小:36864
提供者:
weixin_38677260
NumPy 基本切片和索引的具体使用方法
主要介绍了NumPy 基本切片和索引的具体使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
所属分类:
其它
发布日期:2020-09-19
文件大小:109568
提供者:
weixin_38586279
keras Lambda自定义层实现数据的切片方式,Lambda传参数
1、代码如下: import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import merge from keras.utils.visualize_util import plot from keras.layers import Input, Lambda from keras.models imp
所属分类:
其它
发布日期:2020-12-17
文件大小:55296
提供者:
weixin_38689857
numpy的Fancy Indexing和array比较详解
一:Fancy Indexing import numpy as np #Fancy Indexing x = np.arange(16) np.random.shuffle(x) print(x) #打印所有的元素 print(x[2])#获取某个元素的值 print(x[1:3])#切片 print(x[3:9:2])#指定间距切片 index = [2,4,7,9] #索引数组 print(x[index])#获取索引数组中的元素的值 ind = np.array([[0,2],[1,
所属分类:
其它
发布日期:2020-12-17
文件大小:38912
提供者:
weixin_38528680
深入了解NumPy 高级索引
NumPy 比一般的 Python 序列提供更多的索引方式。除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。 整数数组索引 以下实例获取数组中(0,0),(1,1)和(2,0)位置处的元素。 import numpy as np x = np.array([[1, 2], [3, 4], [5, 6]]) y = x[[0,1,2], [0,1,0]] print (y) 输出结果为: [1 4 5] 以下实例获取了 4X3 数组中的四个角的元素。
所属分类:
其它
发布日期:2020-12-17
文件大小:47104
提供者:
weixin_38680625
浅析NumPy 切片和索引
ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。 ndarray 数组可以基于 0 – n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。 import numpy as np a = np.arange(10) s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2 print (a[s]) 输出结果为: [2
所属分类:
其它
发布日期:2020-12-17
文件大小:41984
提供者:
weixin_38607864
基于numpy中数组元素的切片复制方法
代码1: #!/usr/bin/python import numpy as np arr1 = np.arange(10) print(arr1) slice_data = arr1[3:5] print(slice_data) slice_data[0] = 123 print(slice_data) print(arr1) 类似的代码之前应用过,简单看了一下numpy中的数组切片。 程序的执行结果如下: In [2]: %run exp01.py [0 1 2 3 4 5 6 7 8
所属分类:
其它
发布日期:2020-12-25
文件大小:39936
提供者:
weixin_38526979
python多维数组切片方法
1、数组a第0个元素(二维数组)下的所有子元素(一维数组)的第一列 import numpy as np b=np.arange(24) a=b.reshape(2,3,4) print a print a[0,:,0] 2、取所有二维数组下的每个二维数组的第0个元素(一维数组) b=np.arange(24) a=b.reshape(2,3,4) print a print '--------------------' print a[:,0] 结果: [[ 0 1 2 3] [12
所属分类:
其它
发布日期:2020-12-25
文件大小:30720
提供者:
weixin_38741030
Python 数据分析三剑客之 NumPy(二):NumPy 数组索引、切片、广播、拼接、分割
文章目录【1×00】认识 Numpy 中的 nan 和 inf【1×01】判断是否为 nan 和 inf【1×02】统计数组中 nan 的个数【1×03】统计数组中 inf 的个数【1×04】替换 inf 和 nan【2×00】NumPy 索引【2×01】获取具体元素【2×02】获取行或列【2×03】布尔索引【2×04】花式索引【3×00】NumPy 切片【4×00】NumPy 数组运算以及广播原则【7×00】数组的拼接与元素的添加【7×01】将数组转换成列表,拼接完成再转换成数组【7×02】n
所属分类:
其它
发布日期:2020-12-21
文件大小:191488
提供者:
weixin_38548421
Numpy 四 切片和索引
NumPy 切片和索引 ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。 ndarray 数组可以基于 0 – n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。 import numpy as np a = np.arange(10) s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2 print (a[s]
所属分类:
其它
发布日期:2020-12-21
文件大小:79872
提供者:
weixin_38707192
NumPy 切片和索引
NumPy 切片和索引 ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。 ndarray 数组可以基于 0 – n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。 实例 import numpy as np a = np.arange(10) s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2 print
所属分类:
其它
发布日期:2021-01-03
文件大小:38912
提供者:
weixin_38559646
NumPy 基本切片和索引的具体使用方法
索引和切片是NumPy中最重要最常用的操作。熟练使用NumPy切片操作是数据处理和机器学习的前提,所以一定要掌握好。 文档:https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html 索引 ndarrays可以使用标准Python x[obj]语法对其进行索引 ,其中x是数组,obj是选择方式。有三种可用的索引:字段访问,基本切片,高级索引。究竟是哪一个取决于obj。 注意 在Python中,x[(exp1, exp2, …
所属分类:
其它
发布日期:2021-01-20
文件大小:108544
提供者:
weixin_38721405
«
1
2
3
4
5
»