pandas库的常用操作,参考书籍《Pandas Cookbook》,内容干货,推荐下载!movie get_dtype_counts# output the number of columns with each specific data type:
movie. select_dtypes(include['int ]).head(# select only integer columns
movie. filter(1ike=' facebook').head()#1ike参数表示包含此
我有一个2D(二维) NumPy数组,并希望用255.0替换大于或等于阈值T的所有值。据我所知,最基础的方法是:
shape = arr.shape
result = np.zeros(shape)
for x in range(0, shape[0]):
for y in range(0, shape[1]):
if arr[x, y] >= T:
result[x, y] = 255
有更简洁和pythonic的方式来做到这一点吗?
有没有更快(可能不那么简洁和/或不那么pyt