您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Russell S , Norvig P Artificial Intelligence- A Modern Approach (2Ed,Ph,2003)(T)(1112S)

  2. In Part I, we acknowledge the historical contributions of control theory, game theory, economics, and neuroscience. This helps set the tone for a more integrated coverage of these ideas in subsequent chapters. In Part 11, online search algorithms ar
  3. 所属分类:PHP

    • 发布日期:2009-10-10
    • 文件大小:37748736
    • 提供者:franklei1987
  1. News--The approaching New Year is also boosting online shopping

  2. The approaching New Year is also boosting online shopping
  3. 所属分类:其它

    • 发布日期:2010-12-24
    • 文件大小:1024
    • 提供者:janetsnow
  1. online_bagging_and_boosting ,online-boosting,机器学习

  2. Bagging and boosting are two of the most well-known ensemble learning methods due to their theoretical performance guarantees and strong experimental results. However, these algorithms have been used mainly in batch mode, i.e., they require the enti
  3. 所属分类:专业指导

    • 发布日期:2011-06-04
    • 文件大小:537600
    • 提供者:toilet22
  1. Boosting Trackers

  2. SemiBoosting; Beyongd-semiboosting; online-boosting; Tracking
  3. 所属分类:C++

    • 发布日期:2011-12-08
    • 文件大小:2097152
    • 提供者:moyyuhuihui
  1. Python.Data.Science.Cookbook.178439640

  2. Over 60 practical recipes to help you explore Python and its robust data science capabilities About This Book The book is packed with simple and concise Python code examples to effectively demonstrate advanced concepts in action Explore concepts suc
  3. 所属分类:Python

    • 发布日期:2015-11-26
    • 文件大小:7340032
    • 提供者:ramissue
  1. Foundations of Data Science,Avrim Blum, John Hopcroft and Ravindran Kannan著

  2. Foundations of Data Scienceby Avrim Blum, John Hopcroft and Ravindran Kannan 数据科学导论 Contents 1 Introduction 8 2 High-Dimensional Space 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 The Law of Large
  3. 所属分类:讲义

    • 发布日期:2017-09-26
    • 文件大小:2097152
    • 提供者:lxlybytwo
  1. Get to the Top on Google: Tips and Techniques to Get Your Site to the Top of the Search Engine Rankings -- and Stay Ther

  2. The vast majority of searchers never make it past page two of Google or click on sponsored listings, so being at the top of the standard search results can literally transform your business. Having your site in the top 10 is like having a store near
  3. 所属分类:Web开发

    • 发布日期:2009-03-30
    • 文件大小:1048576
    • 提供者:qq_30426029
  1. online boosting and vision

  2. 本文系统地分析了整个人脸检测算法的核心单元——人脸检测器,自上而下将其划分成为三个功能相对独立的层次:检测器结构、强分类器和弱分类器。本文进一步在各个功能层次上提出了一系列行之有效的新方法.
  3. 所属分类:其它

    • 发布日期:2009-04-23
    • 文件大小:1030144
    • 提供者:conquerorjia
  1. online Bagging and Boosting

  2. Bagging and boosting are well-known ensemble learning methods. we present simple online bagging and boosting algorithms that we claim perform as well as their batch counterparts.
  3. 所属分类:机器学习

    • 发布日期:2019-03-26
    • 文件大小:217088
    • 提供者:joanmy
  1. 基于移动平台的激光雷达点云投影到相机图像上的不确定性估计

  2. 结合多传感设备以实现高级的感知能力是自动驾驶汽车导航的关键要求。传感器融合用于获取有关周围环境的丰富信息。摄像头和激光雷达传感器的融合可获取精确的范围信息,该信息可以投影到可视图像数据上。这样可以对场景有一个高层次的认识,可以用来启用基于上下文的算法,例如避免碰撞更好的导航。组合这些传感器时的主要挑战是将数据对齐到一个公共域中。由于照相机的内部校准中的误差,照相机与激光雷达之间的外部校准以及平台运动导致的误差,因此这可能很困难。在本文中,我们研究了为激光雷达传感器提供运动校正所需的算法。由于不可
  3. 所属分类:深度学习

    • 发布日期:2019-10-20
    • 文件大小:3145728
    • 提供者:qq_16481211
  1. Designing-Machine-Learning-Systems-with-Python.pdf.pdf

  2. Designing-Machine-Learning-Systems-with-Python.pdfDesigning Machine Learning Systems with Python Copyright o 2016 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form o
  3. 所属分类:其它

    • 发布日期:2019-09-14
    • 文件大小:2097152
    • 提供者:weixin_38743481
  1. Deep Learning with Python[www.rejoiceblog.com].pdf

  2. 非常棒的入门书籍,详细介绍了深度学习的基本概念、适用范围以及在Python下的实现方法。 Deep learning FRANCOIS CHOLLET MANNING SHELTER ISLAND For online information and ordering of this and other manning books, please visit www.manning.com.Thepublisheroffersdiscountsonthisbookwhenorderedinqu
  3. 所属分类:深度学习

    • 发布日期:2019-07-20
    • 文件大小:11534336
    • 提供者:fanjinzhi
  1. 基于无监督在线学习实现视频遮挡边界检测

  2. 为了检测视频序列中的遮挡边界,提出一种新颖的基于无监督在线学习的遮挡边界检测方法。该方法提取视频序列中待测帧的遮挡相关特征并计算其对应的时间长度,利用对冲算法思想并结合时间长度及不同遮挡特征求得待测帧中像素点的遮挡相关信息,利用各特征的遮挡相关信息进行投票,完成当前帧图像的遮挡边界检测。利用Online Boosting 思想以当前帧的检测结果来估计下一帧的特征投票权重,实现后续帧图像的遮挡边界检测。该方法通过在线学习思想改变不同特征的权重完成遮挡边界检测功能,无需预先获取视频序列的先验知识。实
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:3145728
    • 提供者:weixin_38677936