您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 总结:Bootstrap(自助法),Bagging,Boosting(提升) - 简书.pdf

  2. 关于机器学习方面的集成算法,包括boosting和bagging,里面讲解详细,值得下载2019/4/27 总结: Bootstrap(白助法), Bagging, Boosting(提升)-简书 assiier 1 -9 Decition boundary Classifier 2 Decislon boundary 2 Classifier 3 o Decision boundary 3 ▲△▲ △6▲ Feature 1 Feature 1 Featur (∑ g Feature Ense
  3. 所属分类:机器学习

    • 发布日期:2019-10-13
    • 文件大小:2097152
    • 提供者:qq_15141977
  1. python之拟合的实现

  2. 主要介绍了python之拟合的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
  3. 所属分类:其它

    • 发布日期:2020-09-19
    • 文件大小:102400
    • 提供者:weixin_38687807
  1. fbprophet案例之python实现

  2. fbprophet案例之python实现目的1.正弦波和矩形波叠加1.1 数据生成过程1.2 数据模拟的python代码1.3 propeht模型拟合2.ARMA过程2.1 ARMA过程和随机模拟器2.2 生成一个平稳的ARMA过程并利用propeht预测2.3 生成一个带趋势的时间序列3.总结 目的      上一篇博文翻译了fbprophet所参考的文献,本篇内容将给出模拟的时间序列,验证下fbpropeht的精度,以及尝试下如何调参; 1.正弦波和矩形波叠加 1.1 数据生成过程     
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:859136
    • 提供者:weixin_38584731
  1. python之拟合的实现

  2. 一、多项式拟合 多项式拟合的话,用的的是numpy这个库的polyfit这个函数。那么多项式拟合,最简单的当然是,一次多项式拟合了,就是线性回归。直接看代码吧 import numpy as np def linear_regression(x,y): #y=bx+a,线性回归 num=len(x) b=(np.sum(x*y)-num*np.mean(x)*np.mean(y))/(np.sum(x*x)-num*np.mean(x)**2) a=np.mean(y)-b*np.me
  3. 所属分类:其它

    • 发布日期:2020-12-31
    • 文件大小:101376
    • 提供者:weixin_38717156