您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. scikit-learn-0.21.3-中文文档.pdf

  2. scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证1.监督学习 1广义线性模型 °1.1.1普通最小二乘法 1.1.2岭回归 1.1.3LaSs0 o1.1.4多任务 Lasso 115弹性网络 o116多任务弹性网络 1.1.7最小角回归 1.1. 8 LARS Lasso 1.19正交匹配追踪法(OMP 1.1.1
  3. 所属分类:机器学习

    • 发布日期:2019-08-24
    • 文件大小:41943040
    • 提供者:h394266861
  1. python使用梯度下降算法实现一个多线性回归

  2. 主要为大家详细介绍了python使用梯度下降算法实现一个多线性回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-17
    • 文件大小:97280
    • 提供者:weixin_38653878
  1. python使用梯度下降算法实现一个多线性回归

  2. python使用梯度下降算法实现一个多线性回归,供大家参考,具体内容如下 图示: import pandas as pd import matplotlib.pylab as plt import numpy as np # Read data from csv pga = pd.read_csv("D:\python3\data\Test.csv") # Normalize the data 归一化值 (x - mean) / (std) pga.AT = (pga.AT - pga.A
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:97280
    • 提供者:weixin_38728555
  1. 线性回归——最小二乘法(公式推导和非调包实现)

  2. 接上一篇文章【线性回归——二维线性回归方程(证明和代码实现)】 前言: 博主前面一篇文章讲述了二维线性回归问题的求解原理和推导过程,以及使用python自己实现算法,但是那种方法只能适用于普通的二维平面问题,今天博主来讲一下线性回归问题中更为通用的方法,也是我们实际开发中会经常用到的一个数学模型,常用的解法就是最小二次乘法和梯度下降法.博主今天对最小二乘法进行推导并使用Python代码自定义实现,废话不多说,开始吧: 一、公式推导 假如现在有一堆这样的数据(x1,y1),(x2,y2),…,(x
  3. 所属分类:其它

    • 发布日期:2021-01-21
    • 文件大小:49152
    • 提供者:weixin_38716872