使用深度学习中的高级主题,例如优化算法,超参数调整,丢失和错误分析,以及解决训练深度神经网络时遇到的典型问题的策略。您将首先研究激活函数,主要是使用单个神经元(ReLu,Sigmoid和Swish),了解如何使用TensorFlow执行线性和逻辑回归,并选择正确的成本函数。 下一节将讨论具有多个层和神经元的更复杂的神经网络架构,并探讨权重随机初始化的问题。整章专门介绍神经网络误差分析的完整概述,给出了解决来自不同分布的方差,偏差,过度拟合和数据集的问题的示例。 Applied Deep Lear
实验室老师让给数据画一张线性拟合图。不会matlab,就琢磨着用python。参照了网上的一些文章,查看了帮助文档,成功的写了出来
这里用到了三个库
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
def f_1(x, A, B):
return A * x + B
plt.figure()
# 拟合点
x0 = [75, 70, 65, 60, 55,50,45,40,35,30]