您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 决策树算法

  2. 决策树算法为机器学习领域最经典算法之一,本课件以1个案例引入决策树算法在日常工作中的应用,之后通过示例详细介绍决策树算法的核心概念信息熵的应用,系统介绍ID3算法,并以Python语言加以实现。
  3. 所属分类:专业指导

    • 发布日期:2013-08-05
    • 文件大小:3145728
    • 提供者:u011442043
  1. 机器学习(决策树)

  2. 运用Python实现了简单了ID3,C4.5的决策树分类,可以简单理解决策树原理和分类效果
  3. 所属分类:专业指导

    • 发布日期:2015-11-03
    • 文件大小:5120
    • 提供者:zx10212029
  1. 决策树算法python代码实现

  2. 决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点
  3. 所属分类:机器学习

    • 发布日期:2018-06-01
    • 文件大小:4096
    • 提供者:u010919410
  1. python实现ID3决策树

  2. python实现ID3决策树,按照给定特征划分数据集 :param axis:划分数据集的特征的维度 :param value:特征的值 :return: 符合该特征的所有实例(并且自动移除掉这维特征) mian.py 绘制决策树
  3. 所属分类:机器学习

    • 发布日期:2020-05-18
    • 文件大小:7168
    • 提供者:qq_42299461
  1. 决策树ID3实现-python.txt

  2. 只用到了numpy库,自己编写的函数,计算交叉熵、信息增益、递归创建决策树、解码分类 # 第1步: 针对每个特征,计算信息增益 # 第2步: 选取最大增益的特征,分裂决策树,递归调用 # 第3步: 解码决策树,进行分类
  3. 所属分类:机器学习

    • 发布日期:2020-03-27
    • 文件大小:5120
    • 提供者:Twilight737
  1. python实现决策树C4.5算法详解(在ID3基础上改进)

  2. 下面小编就为大家带来一篇python实现决策树C4.5算法详解(在ID3基础上改进)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-21
    • 文件大小:132096
    • 提供者:weixin_38593823
  1. 基于ID3决策树算法的实现(Python版)

  2. 下面小编就为大家带来一篇基于ID3决策树算法的实现(Python版)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-21
    • 文件大小:139264
    • 提供者:weixin_38642735
  1. python实现ID3决策树算法

  2. 主要为大家详细介绍了python实现ID3决策树算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:87040
    • 提供者:weixin_38664427
  1. python代码实现ID3决策树算法

  2. 主要为大家详细介绍了python代码实现ID3决策树算法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:47104
    • 提供者:weixin_38682790
  1. 基于Python实现的ID3决策树功能示例

  2. 主要介绍了基于Python实现的ID3决策树功能,简单描述了ID3决策树的相关概念,并结合实例形式分析了Python实现ID3决策树的具体定义与使用技巧,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:57344
    • 提供者:weixin_38738528
  1. python实现决策树ID3算法的示例代码

  2. 主要介绍了python实现决策树ID3算法的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:47104
    • 提供者:weixin_38622475
  1. 基于Python实现的ID3决策树功能示例

  2. 本文实例讲述了基于Python实现的ID3决策树功能。分享给大家供大家参考,具体如下: ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。 如下示例是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:57344
    • 提供者:weixin_38553466
  1. 基于ID3决策树算法的实现(Python版)

  2. 实例如下: # -*- coding:utf-8 -*- from numpy import * import numpy as np import pandas as pd from math import log import operator #计算数据集的香农熵 def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} #给所有可能分类创建字典 for featVec in dataSet:
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:140288
    • 提供者:weixin_38517113
  1. python实现ID3决策树算法

  2. ID3决策树是以信息增益作为决策标准的一种贪心决策树算法 # -*- coding: utf-8 -*- from numpy import * import math import copy import cPickle as pickle class ID3DTree(object): def __init__(self): # 构造方法 self.tree = {} # 生成树 self.dataSet = [] # 数据集 self.labels = []
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:52224
    • 提供者:weixin_38748239
  1. 机器学习推导+python实现(一):线性回归

  2. 写在开头:这个系列的灵感已经整个系列的思路会根据公众号机器学习实验室的节奏进行,相当于做一个自己的理解版本,并且按照以往惯例我们会增加一些问题来对小细节进行讨论。 内容安排 笔者觉得如果单单的去调用sklearn库的机器学习的方法有些不妥,这个系列本应该在去年就开始了,但一直拖着没有更新。所以从今天开始我们一起来探究机器学习的乐趣吧。这个系列开始后,我们还会增加很多细节上的思考问题的讨论系列。 根据公众号机器学习实验室的节奏安排我们预计会涉及以下几个内容的实现:线性回归(一)、逻辑回归(二)、K
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:139264
    • 提供者:weixin_38744902
  1. 机器学习推导+python实现(二):逻辑回归

  2. 写在开头:今天开始逻辑回归的内容分享,仍然是参考学习公众号机器学习实验室的思路和内容,尽量在实现的环节多加一些自己的思考,吸收一下。 内容安排 线性回归(一)、逻辑回归(二)、K近邻(三)、决策树值ID3(四)、CART(五)、感知机(六)、神经网络(七)、线性可分支持向量机(八)、线性支持向量机(九)、线性不可分支持向量机(十)、朴素贝叶斯(十一)、Lasso回归(十二)、Ridge岭回归(十三)等。 今天就是从逻辑回归的内容进行分享,逻辑回归的思想其实在现实生活中很常见,比如通过一段编程的能
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:190464
    • 提供者:weixin_38663516
  1. 机器学习推导+python实现(九):线性支持向量机

  2. 写在开头:今天将跟着昨天的节奏来分享一下线性支持向量机。 内容安排 线性回归(一)、逻辑回归(二)、K近邻(三)、决策树值ID3(四)、CART(五)、感知机(六)、神经网络(七)、线性可分支持向量机(八)、线性支持向量机(九)、线性不可分支持向量机(十)、朴素贝叶斯(十一)、Lasso回归(十二)、Ridge岭回归(十三)等。 昨天再分享线性可分支持向量机的时候,大家不免会发现其既定前提是数据线性可分,但实际生活中对于线性可分的数据来说还是比较少,那么如何在线性可分支持向量机的基础上进行改机使
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:173056
    • 提供者:weixin_38565818
  1. sklearn之决策树

  2. sklearn之决策树简介 第一次写博客,这里就写一下最近在学习的,易快速上手的sklearn吧。 sklearn入门 scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和Matplotlib等python库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。本篇主要介绍决策树。 决策树 决策树是一种有监督学习,从一系列有数据特征和标签的数据中每次选择某一特征来作为划分依据,也就是树的节点,来划分数据。依次进行直到
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:56320
    • 提供者:weixin_38638647
  1. 决策树剪枝算法的python实现方法详解

  2. 本文实例讲述了决策树剪枝算法的python实现方法。分享给大家供大家参考,具体如下: 决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象的值。决策树仅有单一输出,如果有多个输出,可以分别建立独立的决策树以处理不同的输出。 ID3算法:ID3算法是决策树的一种,是基于奥卡姆剃刀原理的,即用尽量
  3. 所属分类:其它

    • 发布日期:2020-12-26
    • 文件大小:140288
    • 提供者:weixin_38658568
  1. python代码实现ID3决策树算法

  2. 本文实例为大家分享了python实现ID3决策树算法的具体代码,供大家参考,具体内容如下 ''''' Created on Jan 30, 2015 author: 史帅 ''' from math import log import operator import re def fileToDataSet(fileName): ''''' 此方法功能是:从文件中读取样本集数据,样本数据的格式为:数据以空白字符分割,最后一列为类标签 参数: fileName
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:47104
    • 提供者:weixin_38620893
« 12 »