您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. MachineLearning-master-python.zip

  2. 属于网络下载资源,感谢原作者的贡献。 ##目录介绍 - **DeepLearning Tutorials** 这个文件夹下包含一些深度学习算法的实现代码,以及具体的应用实例,包含: Keras使用进阶。介绍了怎么保存训练好的CNN模型,怎么将CNN用作特征提取,怎么可视化卷积图。 [keras_usage]介绍了一个简单易用的深度学习框架keras,用经典的Mnist分类问题对该框架的使用进行说明,训练一个CNN,总共不超过30行代码。 将卷积神经网络CNN应用于人脸识别的一个demo,人脸数
  3. 所属分类:专业指导

    • 发布日期:2016-07-04
    • 文件大小:1048576
    • 提供者:qq_33042687
  1. 常用数据挖掘算法总结及Python实现 文字版+code

  2. 本书适合有志于从事数据挖掘的初学者,需要的朋友可看看 第一部分 数据挖掘与机器学习数学基础3 第一章 机器学习的统计基础3 第二章 探索性数据分析(EDA) .11 第二部分 机器学习概述14 第三章 机器学习概述14 第三部分 监督学习---分类与回归16 第四章 KNN(k 最邻近分类算法) 16 第五章 决策树19 第六章 朴素贝叶斯分类29 第七章 Logistic 回归 .32 第八章 SVM 支持向量机42 第九章 集成学习(Esemble Learning)43 第十一章 模型评
  3. 所属分类:Python

    • 发布日期:2018-04-21
    • 文件大小:4194304
    • 提供者:mycoffee1990
  1. 常用数据挖掘算法总结及Python实现

  2. 该文档总结了常用的数据挖掘的算法原理以及Python实践内容,为初学者提供良好的参考资料,需要的朋友可看看! 第一部分 数据挖掘与机器学习数学基础3 第一章 机器学习的统计基础3 第二章 探索性数据分析(EDA).11 第二部分 机器学习概述14 第三章 机器学习概述14 第三部分 监督学习---分类与回归16 第四章 KNN(k 最邻近分类算法) 16 第五章 决策树19 第六章 朴素贝叶斯分类29 第七章 Logistic 回归 .32 第八章 SVM 支持向量机42 第九章 集成学习(E
  3. 所属分类:Python

    • 发布日期:2019-03-29
    • 文件大小:4194304
    • 提供者:weixin_44523404
  1. python机器学习之贝叶斯分类

  2. 主要为大家详细介绍了python机器学习之贝叶斯分类的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:194560
    • 提供者:weixin_38524139
  1. 纯python实现机器学习之kNN算法示例

  2. 前面文章分别简单介绍了线性回归,逻辑回归,贝叶斯分类,并且用python简单实现。这篇文章介绍更简单的 knn, k-近邻算法(kNN,k-NearestNeighbor)。 k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似)。 原理 kNN算法的核心思想是用距离最近(多种衡量距离的方式)的k个样本数据来代表目标数据的分类。 具体讲,存在训练样本集
  3. 所属分类:其它

    • 发布日期:2020-12-25
    • 文件大小:218112
    • 提供者:weixin_38508126
  1. python机器学习之贝叶斯分类

  2. 一、贝叶斯分类介绍 贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算。 二、
  3. 所属分类:其它

    • 发布日期:2020-12-24
    • 文件大小:196608
    • 提供者:weixin_38565628
  1. 机器学习实战之朴素贝叶斯(二)文本分类

  2. 朴素贝叶斯(二)文本分类朴素贝叶斯的一般流程用python进行文本分类准备数据:从文本中构建词向量训练算法:从词向量计算概率测试算法:朴素贝叶斯分类函数文档词袋模型 朴素贝叶斯的一般流程 (1)收集数据:任何方法 (2)准备数据:数值型、布尔型 (3)分析数据:特征多,用直方图效果好 (4)训练算法:计算不同的独立特征的多条件概率 (5)测试算法:计算错误率 (6)使用算法:一般应用于文档分类,也可以在任意分类场景 用python进行文本分类 以在线社区留言板为例,构建快速过滤器,判断是否是侮辱
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:50176
    • 提供者:weixin_38705723
  1. 股票感觉:基于情感字典和机器学习的股市舆情情趣分类可视化Web-源码

  2. 股市舆情情感分类可视化系统 最后更新2018年7月16日 此Web基于Django + Bootstrap + Echarts等框架,个股交易行情数据调用了Tushare接口。关于舆情文本数据采取先爬取东方财富网股吧论坛标题标题设置机器学习训练集,在此基础上运用scikit-learn机器通过Django Web框架,将所得数据传递到前端通过Bootstrap渲染过的html,对数据使用Echarts进行图表可视化处理。 不足之处或交流学习欢迎通过邮箱联系我 目前的功能: 个股历史交易行情 个股
  3. 所属分类:其它

    • 发布日期:2021-01-31
    • 文件大小:5242880
    • 提供者:weixin_42172972