DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种很典型的密度聚类算法,和K-Means,BIRCH这些一般只适用于凸样本集的聚类相比,DBSCAN既可以适用于凸样本集,也可以适用于非凸样本集。这类密度聚类算法一般假定类别可以通过样本分布的紧密程度决定。同一类别的样本,他们之间的紧密相连的,也就是说,在该类别任意样本周围不远处一定有同类别的样本存在。 使用场景: 用于不均匀的
DBSCAN(Density-Based Spatial Clustering of Applications with Noise) 为一种基于密度的聚类算法,它不仅可以找出具有任何形状的簇,而且还可以用于检测离群值。其基本思想为数据点分布紧凑的应被划分为一类,而周围未分布有或仅有极少数点的数据点则有可能为离群值。本文通过python实现了该聚类方法,并将代码进行了封装,方便读者调用。