您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. pytorch 实现模型不同层设置不同的学习率方式

  2. 今天小编就为大家分享一篇pytorch 实现模型不同层设置不同的学习率方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
  3. 所属分类:其它

    • 发布日期:2020-09-18
    • 文件大小:33792
    • 提供者:weixin_38682790
  1. pytorch 实现模型不同层设置不同的学习率方式

  2. 在目标检测的模型训练中, 我们通常都会有一个特征提取网络backbone, 例如YOLO使用的darknet SSD使用的VGG-16。 为了达到比较好的训练效果, 往往会加载预训练的backbone模型参数, 然后在此基础上训练检测网络, 并对backbone进行微调, 这时候就需要为backbone设置一个较小的lr。 class net(torch.nn.Module): def __init__(self): super(net, self).__init__()
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:35840
    • 提供者:weixin_38685694