您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 《动手学深度学习Pytorch版》Task4-机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. 机器翻译及相关技术 Task2中的循环神经网络部分,有实现预测歌词的功能。在那个任务中,训练数据的输入输出长度是固定的,而在机器翻译中,输出的长度是不固定的,所以不能直接用RNN来处理这种任务。 Encoder-Decoder框架是常用于机器翻译,对话系统这类场景的框架。 需要注意的是,在训练过程中Decoder的输入是真实的label,而预测时,输入是上一个ceil的预测值 机器翻译解码 通常用beam search。beam search是一种贪心算法,不是全局最优解。 注意力机制 在“
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:350208
    • 提供者:weixin_38653602
  1. pytorch实现task4——机器翻译及相关技术;注意力机制与Seq2seq模型;Transformer

  2. 机器翻译 机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。 其主要的步骤包括数据预处理、分词、建立词典、载入数据集、Encoder-decoder、seq2seq等。 注意力机制与Seq2seq模型 在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:65536
    • 提供者:weixin_38705723