点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - shatteringdR:在rpart和树决策树上与统计学习理论(SLT)一起使用的有用工具-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
shatteringdR:在rpart和树决策树上与统计学习理论(SLT)一起使用的有用工具-源码
粉碎 在rpart和树型决策树上使用统计学习理论(SLT)的有用工具。 描述 在机器学习(ML)领域,学习是构建算法的最重要步骤之一,该算法旨在预测特定任务,无论这是对象的分类,对特定产品的需求预测,甚至是诊断。恶性疾病。 在ML中,我们可以研究有监督的(有标签,例如一个类)和无监督的算法,这些算法用于模式检测,分组等任务,其中不直接依赖于标签。 知道这一点后,本工作旨在研究不同的监督学习算法,在这种情况下,分类算法(更具体地讲是决策树)将对构成算法学习过程的步骤进行分析研究,探索SLT的概念,
所属分类:
其它
发布日期:2021-02-09
文件大小:113664
提供者:
weixin_42137032