您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 无监督数据增强:无监督数据增强的非官方PyTorch实现-源码

  2. UDA:无监督数据增强 非非官方PyTorch实现。 需要对文本数据集进行实验。 任何请求请求将不胜感激。 SVHN,使用AutoAugment的Imagenet的增强策略无法公开获得。 我们使用策略。 大多数代码来自 。 介绍 去做。 跑 $ python train.py -c confs/wresnet28x2.yaml --unsupervised 实验 Cifar10(精简版4k数据集) 复制纸的结果 WResNet 28x2 纸 我们的融合(Top1错误) 我们最好的(To
  3. 所属分类:其它

    • 发布日期:2021-02-04
    • 文件大小:41984
    • 提供者:weixin_42136837
  1. uda:无监督数据增强(UDA)-源码

  2. 无监督数据增强 总览 无监督数据增强或UDA是一种半监督学习方法,可在各种语言和视觉任务上实现最新的结果。 仅用20个标记的示例,UDA优于以前在25,000个标记的示例上训练的IMDb的最新技术。 模型 带标签的示例数 错误率 混合增值税(以前的SOTA) 25,000 4.32 伯特 25,000 4.51 UDA 20 4.20 使用CIFAR-10(带有4,000个标记的示例)和SVHN(带有1,000个带标记的示例),可将最新方法的错误率降低30%以上: 模型 C
  3. 所属分类:其它

    • 发布日期:2021-02-03
    • 文件大小:330752
    • 提供者:weixin_42117082