提出一种新的人脸描述及识别方法,首先对归一化后的人脸图像进行多方向多尺度Gabor变换;然后对人脸区域进行分块,以块为单位统计Gabor系数的均值和方差,求得块特征矢量(block feature vector,BFV),按先行后列的顺序将各块的BFV拼接,构成整幅人脸图像特征矢量(face feature vector,FFV).在分类器设计阶段,引入两两比对和投票机制,用多个两类分类器组合成多类分类器.在训练某个具体的两类分类器时,根据隶属训练样本计算FFV中每项的分辨力,以分辨力大小为依据